These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Modeling carbon-nutrient interactions during the early recovery of tundra after fire. Jiang Y; Rastetter EB; Rocha AV; Pearce AR; Kwiatkowski BL; Shaver GR Ecol Appl; 2015 Sep; 25(6):1640-52. PubMed ID: 26552271 [TBL] [Abstract][Full Text] [Related]
4. Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis. Pearce AR; Rastetter EB; Kwiatkowski BL; Bowden WB; Mack MC; Jiang Y Ecol Appl; 2015 Jul; 25(5):1271-89. PubMed ID: 26485955 [TBL] [Abstract][Full Text] [Related]
5. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Ludwig SM; Alexander HD; Kielland K; Mann PJ; Natali SM; Ruess RW Glob Chang Biol; 2018 Dec; 24(12):5841-5852. PubMed ID: 30230664 [TBL] [Abstract][Full Text] [Related]
6. N and P constrain C in ecosystems under climate change: Role of nutrient redistribution, accumulation, and stoichiometry. Rastetter EB; Kwiatkowski BL; Kicklighter DW; Barker Plotkin A; Genet H; Nippert JB; O'Keefe K; Perakis SS; Porder S; Roley SS; Ruess RW; Thompson JR; Wieder WR; Wilcox K; Yanai RD Ecol Appl; 2022 Dec; 32(8):e2684. PubMed ID: 35633204 [TBL] [Abstract][Full Text] [Related]
7. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra. Klupar I; Rocha AV; Rastetter EB Glob Chang Biol; 2021 Jul; 27(14):3324-3335. PubMed ID: 33960082 [TBL] [Abstract][Full Text] [Related]
8. Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils. Xu W; Lambæk A; Holm SS; Furbo-Halken A; Elberling B; Ambus PL Sci Total Environ; 2021 Nov; 795():148847. PubMed ID: 34246149 [TBL] [Abstract][Full Text] [Related]
9. Effects on the function of Arctic ecosystems in the short- and long-term perspectives. Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572 [TBL] [Abstract][Full Text] [Related]
10. Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra. Xu W; Elberling B; Ambus PL Sci Total Environ; 2022 Feb; 807(Pt 3):150990. PubMed ID: 34656575 [TBL] [Abstract][Full Text] [Related]
11. The response of Arctic vegetation and soils following an unusually severe tundra fire. Bret-Harte MS; Mack MC; Shaver GR; Huebner DC; Johnston M; Mojica CA; Pizano C; Reiskind JA Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120490. PubMed ID: 23836794 [TBL] [Abstract][Full Text] [Related]
12. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543 [TBL] [Abstract][Full Text] [Related]
13. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO Christiansen CT; Lafreniére MJ; Henry GHR; Grogan P Glob Chang Biol; 2018 Aug; 24(8):3508-3525. PubMed ID: 29411950 [TBL] [Abstract][Full Text] [Related]
14. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra. Liang J; Xia J; Shi Z; Jiang L; Ma S; Lu X; Mauritz M; Natali SM; Pegoraro E; Penton CR; Plaza C; Salmon VG; Celis G; Cole JR; Konstantinidis KT; Tiedje JM; Zhou J; Schuur EAG; Luo Y Glob Chang Biol; 2018 Oct; 24(10):4946-4959. PubMed ID: 29802797 [TBL] [Abstract][Full Text] [Related]
15. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Pellegrini AFA; Ahlström A; Hobbie SE; Reich PB; Nieradzik LP; Staver AC; Scharenbroch BC; Jumpponen A; Anderegg WRL; Randerson JT; Jackson RB Nature; 2018 Jan; 553(7687):194-198. PubMed ID: 29227988 [TBL] [Abstract][Full Text] [Related]
16. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Genet H; He Y; Lyu Z; McGuire AD; Zhuang Q; Clein J; D'Amore D; Bennett A; Breen A; Biles F; Euskirchen ES; Johnson K; Kurkowski T; Kushch Schroder S; Pastick N; Rupp TS; Wylie B; Zhang Y; Zhou X; Zhu Z Ecol Appl; 2018 Jan; 28(1):5-27. PubMed ID: 29044791 [TBL] [Abstract][Full Text] [Related]
17. Impacts of pre-fire conifer density and wildfire severity on ecosystem structure and function at the forest-tundra ecotone. Walker XJ; Howard BK; Jean M; Johnstone JF; Roland C; Rogers BM; Schuur EAG; Solvik KK; Mack MC PLoS One; 2021; 16(10):e0258558. PubMed ID: 34710129 [TBL] [Abstract][Full Text] [Related]
18. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Parker TC; Subke JA; Wookey PA Glob Chang Biol; 2015 May; 21(5):2070-81. PubMed ID: 25367088 [TBL] [Abstract][Full Text] [Related]
19. Warming alters coupled carbon and nutrient cycles in experimental streams. Williamson TJ; Cross WF; Benstead JP; Gíslason GM; Hood JM; Huryn AD; Johnson PW; Welter JR Glob Chang Biol; 2016 Jun; 22(6):2152-64. PubMed ID: 26719040 [TBL] [Abstract][Full Text] [Related]