BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27898285)

  • 1. Comparative Proteomics Reveals the Potential Targets of BcNoxR, a Putative Regulatory Subunit of NADPH Oxidase of Botrytis cinerea.
    Li H; Zhang Z; He C; Qin G; Tian S
    Mol Plant Microbe Interact; 2016 Dec; 29(12):990-1003. PubMed ID: 27898285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH Oxidase Is Crucial for the Cellular Redox Homeostasis in Fungal Pathogen
    Li H; Tian S; Qin G
    Mol Plant Microbe Interact; 2019 Nov; 32(11):1508-1516. PubMed ID: 31230563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.
    Zhang Z; Qin G; Li B; Tian S
    Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits.
    Rui O; Hahn M
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytological and Gene Profile Expression Analysis Reveals Modification in Metabolic Pathways and Catalytic Activities Induce Resistance in
    Maqsood A; Wu C; Ahmar S; Wu H
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32660143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P
    Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis.
    Akagi A; Dandekar AM; Stotz HU
    Phytopathology; 2011 Nov; 101(11):1311-21. PubMed ID: 21809978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-Mediated
    Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X
    J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W; Zhao R; Sheng J; Shen L
    J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. bcpmr1 encodes a P-type Ca(2+)/Mn(2+)-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea.
    Plaza V; Lagües Y; Carvajal M; Pérez-García LA; Mora-Montes HM; Canessa P; Larrondo LF; Castillo L
    Fungal Genet Biol; 2015 Mar; 76():36-46. PubMed ID: 25677379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.
    Yang Q; Yu F; Yin Y; Ma Z
    PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea.
    An B; Li B; Li H; Zhang Z; Qin G; Tian S
    New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea.
    ten Have A; Mulder W; Visser J; van Kan JA
    Mol Plant Microbe Interact; 1998 Oct; 11(10):1009-16. PubMed ID: 9768518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin Induces Disease Resistance to Botrytis cinerea in Tomato Fruit by Activating Jasmonic Acid Signaling Pathway.
    Liu C; Chen L; Zhao R; Li R; Zhang S; Yu W; Sheng J; Shen L
    J Agric Food Chem; 2019 Jun; 67(22):6116-6124. PubMed ID: 31084000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G
    J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox systems in Botrytis cinerea: impact on development and virulence.
    Viefhues A; Heller J; Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea.
    An B; Li B; Qin G; Tian S
    Fungal Genet Biol; 2015 Feb; 75():46-55. PubMed ID: 25624070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence.
    González M; Brito N; Frías M; González C
    PLoS One; 2013; 8(6):e65924. PubMed ID: 23762450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.