These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 27898306)

  • 61. Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images.
    Shaban M; Awan R; Fraz MM; Azam A; Tsang YW; Snead D; Rajpoot NM
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2395-2405. PubMed ID: 32012004
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
    Ma J; Wu F; Jiang T; Zhao Q; Kong D
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep learning model.
    Naito T; Nagashima Y; Taira K; Uchio N; Tsuji S; Shimizu J
    J Neurosci Methods; 2017 Nov; 291():141-149. PubMed ID: 28837816
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance.
    Ngo TA; Lu Z; Carneiro G
    Med Image Anal; 2017 Jan; 35():159-171. PubMed ID: 27423113
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deep Learning-Based Automatic Segmentation of the Proximal Femur from MR Images.
    Zeng G; Zheng G
    Adv Exp Med Biol; 2018; 1093():73-79. PubMed ID: 30306473
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Salient Object Detection with Recurrent Fully Convolutional Networks.
    Wang L; Wang L; Lu H; Zhang P; Ruan X
    IEEE Trans Pattern Anal Mach Intell; 2019 Jul; 41(7):1734-1746. PubMed ID: 29994247
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.
    Li S; Jiang H; Pang W
    Comput Biol Med; 2017 May; 84():156-167. PubMed ID: 28365546
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure Prediction for Gland Segmentation With Hand-Crafted and Deep Convolutional Features.
    Manivannan S; Li W; Zhang J; Trucco E; McKenna SJ
    IEEE Trans Med Imaging; 2018 Jan; 37(1):210-221. PubMed ID: 28910760
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.
    Brosch T; Tang LY; Youngjin Yoo ; Li DK; Traboulsee A; Tam R
    IEEE Trans Med Imaging; 2016 May; 35(5):1229-1239. PubMed ID: 26886978
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Proposal-Free Network for Instance-Level Object Segmentation.
    Liang X; Lin L; Wei Y; Shen X; Yang J; Yan S
    IEEE Trans Pattern Anal Mach Intell; 2018 Dec; 40(12):2978-2991. PubMed ID: 29990248
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Intra- and Inter-Pair Consistency for Semi-Supervised Gland Segmentation.
    Xie Y; Zhang J; Liao Z; Verjans J; Shen C; Xia Y
    IEEE Trans Image Process; 2022; 31():894-905. PubMed ID: 34951847
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deep Learning on Sparse Manifolds for Faster Object Segmentation.
    Nascimento JC; Carneiro G
    IEEE Trans Image Process; 2017 Oct; 26(10):4978-4990. PubMed ID: 28708556
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Occlusion-Aware Instance Segmentation Via BiLayer Network Architectures.
    Ke L; Tai YW; Tang CK
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):10197-10211. PubMed ID: 37027560
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-object segmentation framework using deformable models for medical imaging analysis.
    Namías R; D'Amato JP; Del Fresno M; Vénere M; Pirró N; Bellemare ME
    Med Biol Eng Comput; 2016 Aug; 54(8):1181-92. PubMed ID: 26392182
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images.
    Van Eycke YR; Foucart A; Decaestecker C
    Front Med (Lausanne); 2019; 6():222. PubMed ID: 31681779
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SegAN: Adversarial Network with Multi-scale L
    Xue Y; Xu T; Zhang H; Long LR; Huang X
    Neuroinformatics; 2018 Oct; 16(3-4):383-392. PubMed ID: 29725916
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets.
    Cha KH; Hadjiiski L; Samala RK; Chan HP; Caoili EM; Cohan RH
    Med Phys; 2016 Apr; 43(4):1882. PubMed ID: 27036584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.