These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 27898315)
1. Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Mattila H; Kuuskeri J; Lundell T Bioresour Technol; 2017 Feb; 225():254-261. PubMed ID: 27898315 [TBL] [Abstract][Full Text] [Related]
2. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata. Mäkinen MA; Risulainen N; Mattila H; Lundell TK Appl Microbiol Biotechnol; 2018 Jul; 102(13):5657-5672. PubMed ID: 29728725 [TBL] [Abstract][Full Text] [Related]
3. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Zerva A; Savvides AL; Katsifas EA; Karagouni AD; Hatzinikolaou DG Bioresour Technol; 2014 Jun; 162():294-9. PubMed ID: 24759646 [TBL] [Abstract][Full Text] [Related]
5. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). Kuuskeri J; Mäkelä MR; Isotalo J; Oksanen I; Lundell T BMC Microbiol; 2015 Oct; 15():217. PubMed ID: 26482661 [TBL] [Abstract][Full Text] [Related]
6. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Kuuskeri J; Häkkinen M; Laine P; Smolander OP; Tamene F; Miettinen S; Nousiainen P; Kemell M; Auvinen P; Lundell T Biotechnol Biofuels; 2016; 9(1):192. PubMed ID: 27602055 [TBL] [Abstract][Full Text] [Related]
7. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Khuong le D; Kondo R; De Leon R; Anh TK; Meguro S; Shimizu K; Kamei I Bioresour Technol; 2014 Sep; 167():33-40. PubMed ID: 24968109 [TBL] [Abstract][Full Text] [Related]
8. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Zhang J; Wang X; Chu D; He Y; Bao J Bioresour Technol; 2011 Mar; 102(6):4480-8. PubMed ID: 21277774 [TBL] [Abstract][Full Text] [Related]
9. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Cheng N; Yamamoto Y; Koda K; Tamai Y; Uraki Y Bioresour Technol; 2014 Dec; 173():104-109. PubMed ID: 25291627 [TBL] [Abstract][Full Text] [Related]
10. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae]. Xu L; Shen Y; Bao X Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386 [TBL] [Abstract][Full Text] [Related]
11. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Kamei I; Hirota Y; Meguro S Bioresour Technol; 2012 Dec; 126():137-41. PubMed ID: 23073100 [TBL] [Abstract][Full Text] [Related]
12. Upregulation of MAP kinase HOG1 gene of white-rot fungus Phlebia sp. MG-60 inhibits the ethanol fermentation and mycelial growth. Motoda T; Chen FC; Tsuyama T; Tokumoto Y; Kijidani Y; Kamei I Biosci Biotechnol Biochem; 2023 Jan; 87(2):217-227. PubMed ID: 36610726 [TBL] [Abstract][Full Text] [Related]
13. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Hasunuma T; Kondo A Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593 [TBL] [Abstract][Full Text] [Related]
14. Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation. Soo CS; Yap WS; Hon WM; Phang LY World J Microbiol Biotechnol; 2015 Oct; 31(10):1475-88. PubMed ID: 26185061 [TBL] [Abstract][Full Text] [Related]
15. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations. López-Abelairas M; Lu-Chau TA; Lema JM Appl Biochem Biotechnol; 2013 Aug; 170(8):1838-52. PubMed ID: 23754562 [TBL] [Abstract][Full Text] [Related]
16. Identification of white-rot and soft-rot fungi increasing ethanol production from spent sulfite liquor in co-culture with Saccharomyces cerevisiae. Holmgren M; Sellstedt A J Appl Microbiol; 2008 Jul; 105(1):134-40. PubMed ID: 18248376 [TBL] [Abstract][Full Text] [Related]
17. Lignocellulose integration to 1G-ethanol process using filamentous fungi: fermentation prospects of edible strain of Neurospora intermedia. Nair RB; Osadolor OA; Ravula VK; Lennartsson PR; Taherzadeh MJ BMC Biotechnol; 2018 Aug; 18(1):49. PubMed ID: 30119626 [TBL] [Abstract][Full Text] [Related]
18. Partial consolidated bioprocessing of pretreated Pennisetum sp. by anaerobic thermophiles for enhanced bioethanol production. Mohapatra S; Jena S; Jena PK; Badhai J; Acharya AN; Thatoi H Chemosphere; 2020 Oct; 256():127126. PubMed ID: 32470736 [TBL] [Abstract][Full Text] [Related]
19. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. Gong C; Cao L; Fang D; Zhang J; Kumar Awasthi M; Xue D Bioresour Technol; 2022 May; 352():127105. PubMed ID: 35378286 [TBL] [Abstract][Full Text] [Related]
20. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Itoh H; Wada M; Honda Y; Kuwahara M; Watanabe T J Biotechnol; 2003 Aug; 103(3):273-80. PubMed ID: 12890613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]