BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27898377)

  • 1. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing.
    Lv J; Zhao S; Wu S; Wang Z
    Biosens Bioelectron; 2017 Apr; 90():203-209. PubMed ID: 27898377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy.
    Liu X; Tang Y; Liu P; Yang L; Li L; Zhang Q; Zhou Y; Khan MZH
    Analyst; 2019 Feb; 144(5):1671-1678. PubMed ID: 30652696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR.
    He D; Wu Z; Cui B; Jin Z
    Food Chem; 2019 Apr; 278():197-202. PubMed ID: 30583362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement.
    Chinnappan R; AlZabn R; Abu-Salah KM; Zourob M
    Mikrochim Acta; 2019 Jun; 186(7):435. PubMed ID: 31197617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl.
    Taghdisi SM; Danesh NM; Ramezani M; Ghows N; Mousavi Shaegh SA; Abnous K
    Talanta; 2017 May; 166():187-192. PubMed ID: 28213221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator.
    Zhang Y; Zhu Z; Teng X; Lai Y; Pu S; Pang P; Wang H; Yang C; Barrow CJ; Yang W
    Talanta; 2019 Sep; 202():279-284. PubMed ID: 31171183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-quadruplex DNAzyme-based microcystin-LR (toxin) determination by a novel immunosensor.
    Zhu Y; Xu L; Ma W; Chen W; Yan W; Kuang H; Wang L; Xu C
    Biosens Bioelectron; 2011 Jul; 26(11):4393-8. PubMed ID: 21632232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graphene oxide based biosensor for microcystins detection by fluorescence resonance energy transfer.
    Shi Y; Wu J; Sun Y; Zhang Y; Wen Z; Dai H; Wang H; Li Z
    Biosens Bioelectron; 2012; 38(1):31-6. PubMed ID: 22727517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes.
    Eissa S; Ng A; Siaj M; Zourob M
    Anal Chem; 2014 Aug; 86(15):7551-7. PubMed ID: 25011536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.
    Li X; Cheng R; Shi H; Tang B; Xiao H; Zhao G
    J Hazard Mater; 2016 Mar; 304():474-80. PubMed ID: 26619046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores.
    Dai S; Wu S; Duan N; Chen J; Zheng Z; Wang Z
    Biosens Bioelectron; 2017 May; 91():538-544. PubMed ID: 28086124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase.
    Abnous K; Danesh NM; Nameghi MA; Ramezani M; Alibolandi M; Lavaee P; Taghdisi SM
    Biosens Bioelectron; 2019 Nov; 144():111674. PubMed ID: 31518788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor.
    Lin Z; Huang H; Xu Y; Gao X; Qiu B; Chen X; Chen G
    Talanta; 2013 Jan; 103():371-4. PubMed ID: 23200401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode.
    Du X; Jiang D; Dai L; Zhou L; Hao N; Qian J; Qiu B; Wang K
    Biosens Bioelectron; 2016 Jul; 81():242-248. PubMed ID: 26963789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quantification of free and total microcystin-LR in freshwaters.
    Barreiros Dos Santos M; Queirós RB; Geraldes Á; Marques C; Vilas-Boas V; Dieguez L; Paz E; Ferreira R; Morais J; Vasconcelos V; Piteira J; Freitas PP; Espiña B
    Biosens Bioelectron; 2019 Oct; 142():111550. PubMed ID: 31387024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe
    Jiang LF; Chen BC; Chen B; Li XJ; Liao HL; Huang HM; Guo ZJ; Zhang WY; Wu L
    Talanta; 2017 Aug; 170():350-357. PubMed ID: 28501180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An aptamer-based immunoassay in microchannels of a portable analyzer for detection of microcystin-leucine-arginine.
    Xiang A; Lei X; Ren F; Zang L; Wang Q; Zhang J; Lu Z; Guo Y
    Talanta; 2014 Dec; 130():363-9. PubMed ID: 25159422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated online optical biosensing system for continuous real-time determination of microcystin-LR with high sensitivity and specificity: early warning for cyanotoxin risk in drinking water sources.
    Shi HC; Song BD; Long F; Zhou XH; He M; Lv Q; Yang HY
    Environ Sci Technol; 2013 May; 47(9):4434-41. PubMed ID: 23514076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples.
    Long F; He M; Zhu AN; Shi HC
    Biosens Bioelectron; 2009 Apr; 24(8):2346-51. PubMed ID: 19153038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel biosensor based on single-layer MoS2 nanosheets for detection of Ag(+).
    Mao K; Wu Z; Chen Y; Zhou X; Shen A; Hu J
    Talanta; 2015 Jan; 132():658-63. PubMed ID: 25476360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.