These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 27898829)
1. GAPIT Version 2: An Enhanced Integrated Tool for Genomic Association and Prediction. Tang Y; Liu X; Wang J; Li M; Wang Q; Tian F; Su Z; Pan Y; Liu D; Lipka AE; Buckler ES; Zhang Z Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898829 [TBL] [Abstract][Full Text] [Related]
2. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Wang J; Zhang Z Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):629-640. PubMed ID: 34492338 [TBL] [Abstract][Full Text] [Related]
3. GAPIT: genome association and prediction integrated tool. Lipka AE; Tian F; Wang Q; Peiffer J; Li M; Bradbury PJ; Gore MA; Buckler ES; Zhang Z Bioinformatics; 2012 Sep; 28(18):2397-9. PubMed ID: 22796960 [TBL] [Abstract][Full Text] [Related]
4. Performing Genome-Wide Association Studies with Multiple Models Using GAPIT. Wang J; Tang Y; Zhang Z Methods Mol Biol; 2022; 2481():199-217. PubMed ID: 35641767 [TBL] [Abstract][Full Text] [Related]
5. iPat: intelligent prediction and association tool for genomic research. Chen CJ; Zhang Z Bioinformatics; 2018 Jun; 34(11):1925-1927. PubMed ID: 29342241 [TBL] [Abstract][Full Text] [Related]
6. An efficient unified model for genome-wide association studies and genomic selection. Li H; Su G; Jiang L; Bao Z Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943 [TBL] [Abstract][Full Text] [Related]
7. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Wen YJ; Zhang H; Ni YL; Huang B; Zhang J; Feng JY; Wang SB; Dunwell JM; Zhang YM; Wu R Brief Bioinform; 2018 Jul; 19(4):700-712. PubMed ID: 28158525 [TBL] [Abstract][Full Text] [Related]
8. A SUPER powerful method for genome wide association study. Wang Q; Tian F; Pan Y; Buckler ES; Zhang Z PLoS One; 2014; 9(9):e107684. PubMed ID: 25247812 [TBL] [Abstract][Full Text] [Related]
9. Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits. Wang J; Zhou Z; Zhang Z; Li H; Liu D; Zhang Q; Bradbury PJ; Buckler ES; Zhang Z Heredity (Edinb); 2018 Dec; 121(6):648-662. PubMed ID: 29765161 [TBL] [Abstract][Full Text] [Related]
10. Enrichment of statistical power for genome-wide association studies. Li M; Liu X; Bradbury P; Yu J; Zhang YM; Todhunter RJ; Buckler ES; Zhang Z BMC Biol; 2014 Oct; 12():73. PubMed ID: 25322753 [TBL] [Abstract][Full Text] [Related]
11. cgmisc: enhanced genome-wide association analyses and visualization. Kierczak M; Jabłońska J; Forsberg SK; Bianchi M; Tengvall K; Pettersson M; Scholz V; Meadows JR; Jern P; Carlborg Ö; Lindblad-Toh K Bioinformatics; 2015 Dec; 31(23):3830-1. PubMed ID: 26249815 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide association study (GWAS) with high-throughput SNP chip DNA markers identified novel genetic factors for mesocotyl elongation and seedling emergence in rice ( Kabange NR; Alibu S; Kwon Y; Lee SM; Oh KW; Lee JH Front Genet; 2023; 14():1282620. PubMed ID: 38054028 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). Dong L; Xiao S; Wang Q; Wang Z BMC Genomics; 2016 Jun; 17():460. PubMed ID: 27301965 [TBL] [Abstract][Full Text] [Related]
14. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide hierarchical mixed model association analysis. Hao Z; Gao J; Song Y; Yang R; Liu D Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368830 [TBL] [Abstract][Full Text] [Related]
16. Smooth-Threshold Multivariate Genetic Prediction with Unbiased Model Selection. Ueki M; Tamiya G; Genet Epidemiol; 2016 Apr; 40(3):233-43. PubMed ID: 26947266 [TBL] [Abstract][Full Text] [Related]
17. Using markers with large effect in genetic and genomic predictions. Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367 [TBL] [Abstract][Full Text] [Related]
18. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds. Fang L; Sahana G; Ma P; Su G; Yu Y; Zhang S; Lund MS; Sørensen P BMC Genomics; 2017 Aug; 18(1):604. PubMed ID: 28797230 [TBL] [Abstract][Full Text] [Related]
19. Statistical Learning Methods Applicable to Genome-Wide Association Studies on Unbalanced Case-Control Disease Data. Dai X; Fu G; Zhao S; Zeng Y Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068248 [TBL] [Abstract][Full Text] [Related]
20. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits. Gebreyesus G; Lund MS; Buitenhuis B; Bovenhuis H; Poulsen NA; Janss LG Genet Sel Evol; 2017 Dec; 49(1):89. PubMed ID: 29207947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]