These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27898867)

  • 61. Neonatal calves develop airflow limitation due to chronic hypobaric hypoxia.
    Inscore SC; Stenmark KR; Orton C; Irvin CG
    J Appl Physiol (1985); 1991 Jan; 70(1):384-90. PubMed ID: 2010397
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years.
    Hsia CC; Johnson RL; McDonough P; Dane DM; Hurst MD; Fehmel JL; Wagner HE; Wagner PD
    J Appl Physiol (1985); 2007 Apr; 102(4):1448-55. PubMed ID: 17218427
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Relation of sympathetic activation to ventilation in man at 4300 m altitude.
    Asano K; Mazzeo RS; McCullough RE; Wolfel EE; Reeves JT
    Aviat Space Environ Med; 1997 Feb; 68(2):104-10. PubMed ID: 9125085
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of phlebotomy on coronary blood flow in calves with brisket disease.
    Tsagaris TJ; Sutton RB; Anderson FL; Kuida H
    Proc Soc Exp Biol Med; 1973 Feb; 142(2):560-3. PubMed ID: 4570042
    [No Abstract]   [Full Text] [Related]  

  • 65. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans.
    Agostoni P; Swenson ER; Bussotti M; Revera M; Meriggi P; Faini A; Lombardi C; Bilo G; Giuliano A; Bonacina D; Modesti PA; Mancia G; Parati G;
    J Appl Physiol (1985); 2011 Jun; 110(6):1564-71. PubMed ID: 21436463
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Flight Performance During Exposure to Acute Hypobaric Hypoxia.
    Steinman Y; van den Oord MHAH; Frings-Dresen MHW; Sluiter JK
    Aerosp Med Hum Perform; 2017 Aug; 88(8):760-767. PubMed ID: 28720186
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Altitude adaptation through hematocrit changes.
    Zubieta-Calleja GR; Paulev PE; Zubieta-Calleja L; Zubieta-Castillo G
    J Physiol Pharmacol; 2007 Nov; 58 Suppl 5(Pt 2):811-8. PubMed ID: 18204195
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders.
    Wagner PD; Araoz M; Boushel R; Calbet JA; Jessen B; Rådegran G; Spielvogel H; Søndegaard H; Wagner H; Saltin B
    J Appl Physiol (1985); 2002 Apr; 92(4):1393-400. PubMed ID: 11896002
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ventilatory acclimatization in awake guinea pigs raised at high altitude.
    Yilmaz C; Hogg DC; Ravikumar P; Hsia CC
    Respir Physiol Neurobiol; 2005 Feb; 145(2-3):235-42. PubMed ID: 15705538
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hypoxic ascites in broilers: a review of several studies done in Colombia.
    Hernandez A
    Avian Dis; 1987; 31(3):658-61. PubMed ID: 2960316
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulatory effects of quercetin on hypobaric hypoxic rats.
    Zhou J; Zhou S; Gao Y; Zeng S
    Eur J Pharmacol; 2012 Jan; 674(2-3):450-4. PubMed ID: 22127324
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Long-term stay at low altitude (1,200 m) promotes better hypoxia adaptation and performance.
    Singh K; Gupta RK; Soree P; Rai L; Himashree G
    Indian J Physiol Pharmacol; 2014; 58(4):376-80. PubMed ID: 26215004
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Patent foramen ovale and high-altitude pulmonary edema.
    Allemann Y; Hutter D; Lipp E; Sartori C; Duplain H; Egli M; Cook S; Scherrer U; Seiler C
    JAMA; 2006 Dec; 296(24):2954-8. PubMed ID: 17190896
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [The hemodynamics of the lesser circulation and blood indices in rats under long-term high-altitude hypoxia].
    Razumnikova OM; Shandaulov AKh; Mazhbich BI
    Biull Eksp Biol Med; 1989 May; 107(5):526-8. PubMed ID: 2525407
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hypocapnia and sustained hypoxia blunt ventilation on arrival at high altitude.
    Huang SY; Alexander JK; Grover RF; Maher JT; McCullough RE; McCullough RG; Moore LG; Sampson JB; Weil JV; Reeves JT
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Mar; 56(3):602-6. PubMed ID: 6423588
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Physical adaptation of children to life at high altitude.
    de Meer K; Heymans HS; Zijlstra WG
    Eur J Pediatr; 1995 Apr; 154(4):263-72. PubMed ID: 7607274
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluation of the sensitivity of pulmonary arterial pressure to elevation using a reaction norm model in Angus Cattle.
    Speidel SE; Thomas MG; Holt TN; Enns RM
    J Anim Sci; 2020 May; 98(5):. PubMed ID: 32315038
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pulmonary arterial pressure testing for high mountain disease in cattle.
    Holt TN; Callan RJ
    Vet Clin North Am Food Anim Pract; 2007 Nov; 23(3):575-96, vii. PubMed ID: 17920462
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cardiorespiratory response to exercise in men repeatedly exposed to extreme altitude.
    Milledge JS; Ward MP; Williams ES; Clarke CR
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Nov; 55(5):1379-85. PubMed ID: 6417076
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Is normobaric hypoxia an effective treatment for sustaining previously acquired altitude acclimatization?
    Beidleman BA; Fulco CS; Cadarette BS; Cymerman A; Buller MJ; Salgado RM; Posch AM; Staab JE; Sils IV; Yurkevicius BR; Luippold AJ; Welles AP; Muza SR
    J Appl Physiol (1985); 2017 Nov; 123(5):1214-1227. PubMed ID: 28705998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.