These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2577 related articles for article (PubMed ID: 27898976)

  • 21. Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy.
    Krause J; Gulshan V; Rahimy E; Karth P; Widner K; Corrado GS; Peng L; Webster DR
    Ophthalmology; 2018 Aug; 125(8):1264-1272. PubMed ID: 29548646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs.
    Li F; Wang Y; Xu T; Dong L; Yan L; Jiang M; Zhang X; Jiang H; Wu Z; Zou H
    Eye (Lond); 2022 Jul; 36(7):1433-1441. PubMed ID: 34211137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Deep Learning Algorithm for Automatic Diagnosis of Diabetic Retinopathy.
    Raju M; Pagidimarri V; Barreto R; Kadam A; Kasivajjala V; Aswath A
    Stud Health Technol Inform; 2017; 245():559-563. PubMed ID: 29295157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of a Deep Learning Algorithm for Diabetic Retinopathy.
    Romero-Aroca P; Verges-Puig R; de la Torre J; Valls A; Relaño-Barambio N; Puig D; Baget-Bernaldiz M
    Telemed J E Health; 2020 Aug; 26(8):1001-1009. PubMed ID: 31682189
    [No Abstract]   [Full Text] [Related]  

  • 25. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks.
    Brown JM; Campbell JP; Beers A; Chang K; Ostmo S; Chan RVP; Dy J; Erdogmus D; Ioannidis S; Kalpathy-Cramer J; Chiang MF;
    JAMA Ophthalmol; 2018 Jul; 136(7):803-810. PubMed ID: 29801159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated machine learning model for fundus image classification by health-care professionals with no coding experience.
    Zago Ribeiro L; Nakayama LF; Malerbi FK; Regatieri CVS
    Sci Rep; 2024 May; 14(1):10395. PubMed ID: 38710726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinician-Driven AI: Code-Free Self-Training on Public Data for Diabetic Retinopathy Referral.
    Korot E; Gonçalves MB; Huemer J; Beqiri S; Khalid H; Kelly M; Chia M; Mathijs E; Struyven R; Moussa M; Keane PA
    JAMA Ophthalmol; 2023 Nov; 141(11):1029-1036. PubMed ID: 37856110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical validation of a smartphone-based retinal camera for diabetic retinopathy screening.
    de Oliveira JAE; Nakayama LF; Zago Ribeiro L; de Oliveira TVF; Choi SNJH; Neto EM; Cardoso VS; Dib SA; Melo GB; Regatieri CVS; Malerbi FK
    Acta Diabetol; 2023 Aug; 60(8):1075-1081. PubMed ID: 37149834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning.
    Burlina P; Paul W; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2022 Feb; 140(2):185-189. PubMed ID: 34967890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.
    Rajalakshmi R; Subashini R; Anjana RM; Mohan V
    Eye (Lond); 2018 Jun; 32(6):1138-1144. PubMed ID: 29520050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal imaging interpreted by graders to detect re-activation of diabetic eye disease in previously treated patients: the EMERALD diagnostic accuracy study.
    Lois N; Cook J; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ghanchi F; Scanlon P; Sivaprasad S; Steel D; Styles C; Azuara-Blanco A; Prior L; Waugh N
    Health Technol Assess; 2021 May; 25(32):1-104. PubMed ID: 34060440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.
    Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS
    Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empowering Portable Age-Related Macular Degeneration Screening: Evaluation of a Deep Learning Algorithm for a Smartphone Fundus Camera.
    Savoy FM; Rao DP; Toh JK; Ong B; Sivaraman A; Sharma A; Das T
    BMJ Open; 2024 Sep; 14(9):e081398. PubMed ID: 39237272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.
    Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J
    Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine.
    Saha SK; Fernando B; Cuadros J; Xiao D; Kanagasingam Y
    J Digit Imaging; 2018 Dec; 31(6):869-878. PubMed ID: 29704086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A telemedical approach to the screening of diabetic retinopathy: digital fundus photography.
    Liesenfeld B; Kohner E; Piehlmeier W; Kluthe S; Aldington S; Porta M; Bek T; Obermaier M; Mayer H; Mann G; Holle R; Hepp KD
    Diabetes Care; 2000 Mar; 23(3):345-8. PubMed ID: 10868863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System.
    van der Heijden AA; Abramoff MD; Verbraak F; van Hecke MV; Liem A; Nijpels G
    Acta Ophthalmol; 2018 Feb; 96(1):63-68. PubMed ID: 29178249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs.
    Pandey PU; Ballios BG; Christakis PG; Kaplan AJ; Mathew DJ; Ong Tone S; Wan MJ; Micieli JA; Wong JCY
    Br J Ophthalmol; 2024 Feb; 108(3):417-423. PubMed ID: 36720585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.
    Phene S; Dunn RC; Hammel N; Liu Y; Krause J; Kitade N; Schaekermann M; Sayres R; Wu DJ; Bora A; Semturs C; Misra A; Huang AE; Spitze A; Medeiros FA; Maa AY; Gandhi M; Corrado GS; Peng L; Webster DR
    Ophthalmology; 2019 Dec; 126(12):1627-1639. PubMed ID: 31561879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 129.