BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27899048)

  • 1. The method for breast cancer grade prediction and pathway analysis based on improved multiple kernel learning.
    Song T; Wang Y; Du W; Cao S; Tian Y; Liang Y
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650037. PubMed ID: 27899048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data.
    Tao M; Song T; Du W; Han S; Zuo C; Li Y; Wang Y; Yang Z
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30866472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome.
    Sun D; Li A; Tang B; Wang M
    Comput Methods Programs Biomed; 2018 Jul; 161():45-53. PubMed ID: 29852967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous multiple kernel learning for breast cancer outcome evaluation.
    Yu X; Gong X; Jiang H
    BMC Bioinformatics; 2020 Apr; 21(1):155. PubMed ID: 32326887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating multiple omics data for the discovery of potential Beclin-1 interactions in breast cancer.
    Chen Y; Wang X; Wang G; Li Z; Wang J; Huang L; Qin Z; Yuan X; Cheng Z; Zhang S; Yin Y; He J
    Mol Biosyst; 2017 May; 13(5):991-999. PubMed ID: 28401970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVM and SVM Ensembles in Breast Cancer Prediction.
    Huang MW; Chen CW; Lin WC; Ke SW; Tsai CF
    PLoS One; 2017; 12(1):e0161501. PubMed ID: 28060807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-kernel learning for genomic data mining and prediction.
    Wilson CM; Li K; Yu X; Kuan PF; Wang X
    BMC Bioinformatics; 2019 Aug; 20(1):426. PubMed ID: 31416413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.
    Yan KK; Zhao H; Pang H
    BMC Bioinformatics; 2017 Dec; 18(1):539. PubMed ID: 29212468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
    Kim S; Lin CW; Tseng GC
    Bioinformatics; 2016 Jul; 32(13):1966-73. PubMed ID: 27153719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; PrudĂȘncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods.
    He Z; Zhang J; Yuan X; Zhang Y
    Front Genet; 2020; 11():632901. PubMed ID: 33537063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel MKL Method for GBM Prognosis Prediction by Integrating Histopathological Image and Multi-Omics Data.
    Zhang Y; Li A; He J; Wang M
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):171-179. PubMed ID: 30763249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
    Turki T; Wei Z; Wang JTL
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.
    Vural S; Wang X; Guda C
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):62. PubMed ID: 27587275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets.
    Rahimi A; Gönen M
    Bioinformatics; 2018 Jul; 34(13):i412-i421. PubMed ID: 29949993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.