These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27899282)

  • 1. BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts.
    Xiong P; Zhang C; Zheng W; Zhang Y
    J Mol Biol; 2017 Feb; 429(3):426-434. PubMed ID: 27899282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles.
    Brender JR; Zhang Y
    PLoS Comput Biol; 2015 Oct; 11(10):e1004494. PubMed ID: 26506533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate stabilities of laccase mutants predicted with a modified FoldX protocol.
    Christensen NJ; Kepp KP
    J Chem Inf Model; 2012 Nov; 52(11):3028-42. PubMed ID: 23102044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the impact of deleterious mutations in the protein kinase domain of FGFR2 in the context of function, structure, and pathogenesis--a bioinformatics approach.
    C GP; Rajith B; Chakraborty C
    Appl Biochem Biotechnol; 2013 Aug; 170(8):1853-70. PubMed ID: 23754559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes.
    Geng C; Vangone A; Bonvin AMJJ
    Protein Eng Des Sel; 2016 Aug; 29(8):291-299. PubMed ID: 27284087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering protein therapeutics: predictive performances of a structure-based virtual affinity maturation protocol.
    Oberlin M; Kroemer R; Mikol V; Minoux H; Tastan E; Baurin N
    J Chem Inf Model; 2012 Aug; 52(8):2204-14. PubMed ID: 22788756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting affinity- and specificity-enhancing mutations at protein-protein interfaces.
    Sharabi O; Shirian J; Shifman JM
    Biochem Soc Trans; 2013 Oct; 41(5):1166-9. PubMed ID: 24059503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein-protein interfaces.
    Bougouffa S; Warwicker J
    BMC Bioinformatics; 2008 Oct; 9():448. PubMed ID: 18939984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based protocol for identifying mutations that enhance protein-protein binding affinities.
    Sammond DW; Eletr ZM; Purbeck C; Kimple RJ; Siderovski DP; Kuhlman B
    J Mol Biol; 2007 Aug; 371(5):1392-404. PubMed ID: 17603074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the charge space of protein-protein association: a proteomic study.
    Shaul Y; Schreiber G
    Proteins; 2005 Aug; 60(3):341-52. PubMed ID: 15887221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.
    Kowalsky CA; Whitehead TA
    Proteins; 2016 Dec; 84(12):1914-1928. PubMed ID: 27699856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-state prediction of single point mutations on protein stability changes.
    Capriotti E; Fariselli P; Rossi I; Casadio R
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S6. PubMed ID: 18387208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligomeric protein structure networks: insights into protein-protein interactions.
    Brinda KV; Vishveshwara S
    BMC Bioinformatics; 2005 Dec; 6():296. PubMed ID: 16336694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
    Gapsys V; de Groot BL
    J Chem Theory Comput; 2017 Dec; 13(12):6275-6289. PubMed ID: 29125747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSIPe: accurately estimating protein-protein binding affinity change upon mutations using evolutionary profiles in combination with an optimized physical energy function.
    Huang X; Zheng W; Pearce R; Zhang Y
    Bioinformatics; 2020 Apr; 36(8):2429-2437. PubMed ID: 31830252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FoldX web server: an online force field.
    Schymkowitz J; Borg J; Stricher F; Nys R; Rousseau F; Serrano L
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W382-8. PubMed ID: 15980494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale approach to predicting affinity changes in protein-protein interfaces.
    Dourado DF; Flores SC
    Proteins; 2014 Oct; 82(10):2681-90. PubMed ID: 24975440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.