These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 278995)

  • 21. Metabolic dependence of protein arrangement in human erythrocyte membranes. I. Analysis of spectrin-rich complexes in ATP-depleted red cells.
    Palek J; Liu SC; Snyder LM
    Blood; 1978 Mar; 51(3):385-95. PubMed ID: 623905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alteration by procaine of spectrin cross-links, deformability, and fluidity related properties of the erythrocyte membrane.
    Geyer G; Halbhuber KJ; Stibenz D; Scheven C; Unger J; Benser A; Fröber R; Makovitzky J; Geiling D; Geiling HG
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):472-86. PubMed ID: 6159284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectrin phosphorylation and shape change of human erythrocyte ghosts.
    Patel VP; Fairbanks G
    J Cell Biol; 1981 Feb; 88(2):430-40. PubMed ID: 7204501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel decrease of erythrocyte membrane deformability and spectrin solubility at low pH.
    Smith BD; La Celle PL
    Blood; 1979 Jan; 53(1):15-8. PubMed ID: 31214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphate metabolite regulation of spectrin interactions.
    Sheetz MP; Casaly J
    Scand J Clin Lab Invest Suppl; 1981; 156():117-22. PubMed ID: 6948372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations.
    Chasis JA; Mohandas N
    J Cell Biol; 1986 Aug; 103(2):343-50. PubMed ID: 3733870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability.
    Arduini A; Rossi M; Mancinelli G; Belfiglio M; Scurti R; Radatti G; Shohet SB
    Life Sci; 1990; 47(26):2395-400. PubMed ID: 2263166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of malarial invasion of red cells by chemical and immunochemical linking of spectrin molecules.
    Dluzewski AR; Rangachari K; Gratzer WB; Wilson RJ
    Br J Haematol; 1983 Dec; 55(4):629-37. PubMed ID: 6367802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Possible roles for the membrane cytoskeleton in regulating red cell stability and deformability.
    Shohet SB
    Scand J Clin Lab Invest Suppl; 1981; 156():123-30. PubMed ID: 6459641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Erythrocyte spectrin alteration induced by low-density lipoprotein.
    Hui DY; Harmony JA
    J Supramol Struct; 1979; 10(2):253-63. PubMed ID: 222969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The spectrin phosphorylation reaction in human erythrocytes.
    Greenquist AC; Wyatt JL; Guatelli JC; Shohet SB
    Prog Clin Biol Res; 1978; 20():1-24. PubMed ID: 652813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity.
    Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation and dephosphorylation of spectrin from human erythrocyte ghosts under physiological conditions: autocatalysis rather than reaction with separate kinase and phosphatase.
    Imhof BA; Acha-Orbea HJ; Libermann TA; Reber BF; Lanz JH; Winterhalter KH; Birchmeier W
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3264-8. PubMed ID: 6932020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Naturally occurring autoantibodies to skeletal proteins from human red blood cells.
    Lutz HU; Wipf G
    J Immunol; 1982 Apr; 128(4):1695-9. PubMed ID: 7061846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration Young's moduli by protein 4.1 phosphorylation play a potential role in the deformability development of vertebrate erythrocytes.
    Tang F; Lei X; Xiong Y; Wang R; Mao J; Wang X
    J Biomech; 2014 Oct; 47(13):3400-7. PubMed ID: 25242130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence that spectrin is a determinant of shape and deformability in the human erythrocyte.
    Lux SE; John KM
    Prog Clin Biol Res; 1977; 17():481-91. PubMed ID: 928462
    [No Abstract]   [Full Text] [Related]  

  • 40. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions.
    Takakuwa Y; Mohandas N
    J Clin Invest; 1988 Aug; 82(2):394-400. PubMed ID: 3403710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.