BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27899608)

  • 1. TFBSbank: a platform to dissect the big data of protein-DNA interaction in human and model species.
    Chen D; Jiang S; Ma X; Li F
    Nucleic Acids Res; 2017 Jan; 45(D1):D151-D157. PubMed ID: 27899608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChIPseek, a web-based analysis tool for ChIP data.
    Chen TW; Li HP; Lee CC; Gan RC; Huang PJ; Wu TH; Lee CY; Chang YF; Tang P
    BMC Genomics; 2014 Jun; 15(1):539. PubMed ID: 24974934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
    Mitra S; Biswas A; Narlikar L
    PLoS Comput Biol; 2018 Apr; 14(4):e1006090. PubMed ID: 29684008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors.
    Hu H; Miao YR; Jia LH; Yu QY; Zhang Q; Guo AY
    Nucleic Acids Res; 2019 Jan; 47(D1):D33-D38. PubMed ID: 30204897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles.
    Xuan Lin QX; Sian S; An O; Thieffry D; Jha S; Benoukraf T
    Nucleic Acids Res; 2019 Jan; 47(D1):D145-D154. PubMed ID: 30380113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new exhaustive method and strategy for finding motifs in ChIP-enriched regions.
    Jia C; Carson MB; Wang Y; Lin Y; Lu H
    PLoS One; 2014; 9(1):e86044. PubMed ID: 24475069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Genome-Wide TF Binding and Gene Expression Data to Characterize Gene Regulatory Networks in Plant Development.
    Chen D; Kaufmann K
    Methods Mol Biol; 2017; 1629():239-269. PubMed ID: 28623590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes.
    Sethi I; Sinha S; Buck MJ
    BMC Genomics; 2014 Nov; 15(1):1042. PubMed ID: 25433490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
    Jin J; Tian F; Yang DC; Meng YQ; Kong L; Luo J; Gao G
    Nucleic Acids Res; 2017 Jan; 45(D1):D1040-D1045. PubMed ID: 27924042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data.
    Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ
    BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays.
    Shrestha S; Sewell JA; Santoso CS; Forchielli E; Carrasco Pro S; Martinez M; Fuxman Bass JI
    Genome Res; 2019 Sep; 29(9):1533-1544. PubMed ID: 31481462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChExMix: A Method for Identifying and Classifying Protein-DNA Interaction Subtypes.
    Yamada N; Kuntala PK; Pugh BF; Mahony S
    J Comput Biol; 2020 Mar; 27(3):429-435. PubMed ID: 32023130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.
    Yang CC; Andrews EH; Chen MH; Wang WY; Chen JJ; Gerstein M; Liu CC; Cheng C
    BMC Genomics; 2016 Aug; 17(1):632. PubMed ID: 27519564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.