These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 2790030)

  • 1. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum.
    Ikemoto N; Ronjat M; Mészáros LG; Koshita M
    Biochemistry; 1989 Aug; 28(16):6764-71. PubMed ID: 2790030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravesicular calcium transient during calcium release from sarcoplasmic reticulum.
    Ikemoto N; Antoniu B; Kang JJ; Mészáros LG; Ronjat M
    Biochemistry; 1991 May; 30(21):5230-7. PubMed ID: 2036390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational change of the foot protein of sarcoplasmic reticulum as an initial event of calcium release.
    Ohkusa T; Kang JJ; Morii M; Ikemoto N
    J Biochem; 1991 Apr; 109(4):609-15. PubMed ID: 1869514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence conformational probe study of calcium release from sarcoplasmic reticulum.
    Morii M; Danko S; Kim DH; Ikemoto N
    J Biol Chem; 1986 Feb; 261(5):2343-8. PubMed ID: 2418023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of tetraphenylboron-induced increase in inner surface charge on Ca2+ release from sarcoplasmic reticulum.
    Liu GH; Oba T
    Jpn J Physiol; 1990; 40(5):723-36. PubMed ID: 2086992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes.
    Terentyev D; Viatchenko-Karpinski S; Vedamoorthyrao S; Oduru S; Györke I; Williams SC; Györke S
    J Physiol; 2007 Aug; 583(Pt 1):71-80. PubMed ID: 17569730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum.
    Collins JH; Tarcsafalvi A; Ikemoto N
    Biochem Biophys Res Commun; 1990 Feb; 167(1):189-93. PubMed ID: 2310388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes in the junctional foot protein/Ca2+ release channel mediate depolarization-induced Ca2+ release from sarcoplasmic reticulum.
    Yano M; el-Hayek R; Ikemoto N
    J Biol Chem; 1995 Feb; 270(7):3017-21. PubMed ID: 7852382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin.
    Mitchell RD; Simmerman HK; Jones LR
    J Biol Chem; 1988 Jan; 263(3):1376-81. PubMed ID: 3335548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminal pH regulated calcium release kinetics in sarcoplasmic reticulum vesicles.
    Donoso P; Beltrán M; Hidalgo C
    Biochemistry; 1996 Oct; 35(41):13419-25. PubMed ID: 8873610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of calsequestrin-binding 30-kDa protein in sarcoplasmic reticulum of skeletal muscle.
    Kagari T; Yamaguchi N; Kasai M
    Biochem Biophys Res Commun; 1996 Oct; 227(3):700-6. PubMed ID: 8885997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum.
    Costello B; Chadwick C; Saito A; Chu A; Maurer A; Fleischer S
    J Cell Biol; 1986 Sep; 103(3):741-53. PubMed ID: 2943746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin.
    Kawasaki T; Kasai M
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1120-7. PubMed ID: 8147852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. I. Selective labeling of functionally distinct sulfhydryl groups with conformational probes and evidence for a Ca2+-dependent conformational change.
    Yasuoka-Yabe K; Kawakita M
    J Biochem; 1983 Sep; 94(3):665-75. PubMed ID: 6139370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast kinetics of calcium dissociation from calsequestrin.
    Beltrán M; Barrientos G; Hidalgo C
    Biol Res; 2006; 39(3):493-503. PubMed ID: 17106581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.