These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27900688)

  • 1. Degradation Network Reconstruction Guided by Metagenomic Data.
    Bargiela R; Ferrer M
    Methods Mol Biol; 2017; 1539():145-157. PubMed ID: 27900688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomics: Probing pollutant fate in natural and engineered ecosystems.
    Bouhajja E; Agathos SN; George IF
    Biotechnol Adv; 2016 Dec; 34(8):1413-1426. PubMed ID: 27825829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RemeDB: Tool for Rapid Prediction of Enzymes Involved in Bioremediation from High-Throughput Metagenome Data Sets.
    Sankara Subramanian SH; Balachandran KRS; Rangamaran VR; Gopal D
    J Comput Biol; 2020 Jul; 27(7):1020-1029. PubMed ID: 31800321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetCap: a bioinformatics probe design pipeline for large-scale targeted metagenomics.
    Kushwaha SK; Manoharan L; Meerupati T; Hedlund K; Ahrén D
    BMC Bioinformatics; 2015 Feb; 16(1):65. PubMed ID: 25880302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical evaluation of 11 de novo assemblers in metagenome assembly.
    Forouzan E; Shariati P; Mousavi Maleki MS; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2018 Aug; 151():99-105. PubMed ID: 29953874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatics for NGS-based metagenomics and the application to biogas research.
    Jünemann S; Kleinbölting N; Jaenicke S; Henke C; Hassa J; Nelkner J; Stolze Y; Albaum SP; Schlüter A; Goesmann A; Sczyrba A; Stoye J
    J Biotechnol; 2017 Nov; 261():10-23. PubMed ID: 28823476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Web Resources for Metagenomics Studies.
    Dudhagara P; Bhavsar S; Bhagat C; Ghelani A; Bhatt S; Patel R
    Genomics Proteomics Bioinformatics; 2015 Oct; 13(5):296-303. PubMed ID: 26602607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool.
    Zou B; Li J; Zhou Q; Quan ZX
    PLoS One; 2017; 12(3):e0174609. PubMed ID: 28350876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metagenomics using next-generation sequencing.
    Bragg L; Tyson GW
    Methods Mol Biol; 2014; 1096():183-201. PubMed ID: 24515370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.
    Kim J; Kim MS; Koh AY; Xie Y; Zhan X
    BMC Bioinformatics; 2016 Oct; 17(1):420. PubMed ID: 27724866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Megraft: a software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes and similar environmental datasets.
    Bengtsson J; Hartmann M; Unterseher M; Vaishampayan P; Abarenkov K; Durso L; Bik EM; Garey JR; Eriksson KM; Nilsson RH
    Res Microbiol; 2012 Jul; 163(6-7):407-12. PubMed ID: 22824070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A review on the bioinformatics pipelines for metagenomic research].
    Ye DD; Fan MM; Guan Q; Chen HJ; Ma ZS
    Dongwuxue Yanjiu; 2012 Dec; 33(6):574-85. PubMed ID: 23266976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes.
    Kristiansson E; Hugenholtz P; Dalevi D
    Bioinformatics; 2009 Oct; 25(20):2737-8. PubMed ID: 19696045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language.
    Coelho LP; Alves R; Monteiro P; Huerta-Cepas J; Freitas AT; Bork P
    Microbiome; 2019 Jun; 7(1):84. PubMed ID: 31159881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic inference of biochemical reactions in microbial communities from metagenomic sequences.
    Jiao D; Ye Y; Tang H
    PLoS Comput Biol; 2013; 9(3):e1002981. PubMed ID: 23555216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational workflow for the fine-grained analysis of metagenomic samples.
    Pérez-Wohlfeil E; Arjona-Medina JA; Torreno O; Ulzurrun E; Trelles O
    BMC Genomics; 2016 Oct; 17(Suppl 8):802. PubMed ID: 27801291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.
    Huson DH; Tappu R; Bazinet AL; Xie C; Cummings MP; Nieselt K; Williams R
    Microbiome; 2017 Jan; 5(1):11. PubMed ID: 28122610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional meta-omics provide critical insights into long- and short-read assemblies.
    Galata V; Busi SB; Kunath BJ; de Nies L; Calusinska M; Halder R; May P; Wilmes P; Laczny CC
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34453168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment recruitment on metabolic pathways: comparative metabolic profiling of metagenomes and metatranscriptomes.
    Desai DK; Schunck H; Löser JW; Laroche J
    Bioinformatics; 2013 Mar; 29(6):790-1. PubMed ID: 23303511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.