BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27900834)

  • 1. Transformation of Free and Dipeptide-Bound Glycated Amino Acids by Two Strains of Saccharomyces cerevisiae.
    Hellwig M; Börner M; Beer F; van Pée KH; Henle T
    Chembiochem; 2017 Feb; 18(3):266-275. PubMed ID: 27900834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of Free and Dipeptide-Bound Formyline and Pyrraline by Saccharomyces Yeasts.
    Kertsch AL; Einicke J; Miedl J; Hellwig M; Henle T
    Chembiochem; 2024 Jun; 25(11):e202300854. PubMed ID: 38613434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast Metabolites of Glycated Amino Acids in Beer.
    Hellwig M; Beer F; Witte S; Henle T
    J Agric Food Chem; 2018 Jul; 66(28):7451-7460. PubMed ID: 29746116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.
    Hellwig M; Witte S; Henle T
    J Agric Food Chem; 2016 Sep; 64(38):7234-43. PubMed ID: 27594145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins.
    Hellwig M; Geissler S; Matthes R; Peto A; Silow C; Brandsch M; Henle T
    Chembiochem; 2011 May; 12(8):1270-9. PubMed ID: 21538757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota.
    Hellwig M; Bunzel D; Huch M; Franz CM; Kulling SE; Henle T
    J Agric Food Chem; 2015 Aug; 63(30):6723-30. PubMed ID: 26186075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Peptide Bound Pyrraline in the Maillard Model Systems with Different Lys-Containing Dipeptides and Tripeptides.
    Liang Z; Li L; Qi H; Wan L; Cai P; Xu Z; Li B
    Molecules; 2016 Apr; 21(4):463. PubMed ID: 27070556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form.
    Geissler S; Hellwig M; Markwardt F; Henle T; Brandsch M
    Eur J Pharm Biopharm; 2011 May; 78(1):75-82. PubMed ID: 21216287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrraline ether crosslinks as a basis for protein crosslinking by the advanced Maillard reaction in aging and diabetes.
    Nagaraj RH; Portero-Otin M; Monnier VM
    Arch Biochem Biophys; 1996 Jan; 325(2):152-8. PubMed ID: 8561492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates.
    Liang Z; Li L; Qi H; Zhang X; Xu Z; Li B
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27384561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Free and Protein-Bound Maillard Reaction Products N-ε-Carboxymethyllysine, N-ε-Fructosyllysine, and Pyrraline on Nrf2 and NFκB in HCT 116 Cells.
    Raupbach J; Müller SK; Schnell V; Friedrich S; Hellwig A; Grune T; Henle T
    Mol Nutr Food Res; 2023 Sep; 67(18):e2300137. PubMed ID: 37465844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells.
    Hellwig M; Geissler S; Peto A; Knütter I; Brandsch M; Henle T
    J Agric Food Chem; 2009 Jul; 57(14):6474-80. PubMed ID: 19555106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter hPEPT1.
    Geissler S; Hellwig M; Zwarg M; Markwardt F; Henle T; Brandsch M
    J Agric Food Chem; 2010 Feb; 58(4):2543-7. PubMed ID: 20104847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urinary pyrraline as a biochemical marker of non-oxidative Maillard reactions in vivo.
    Portero-Otín M; Pamplona R; Bellmunt MJ; Bergua M; Nagaraj RH; Prat J
    Life Sci; 1997; 60(4-5):279-87. PubMed ID: 9010483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatographic evidence for pyrraline formation during protein glycation in vitro and in vivo.
    Portero-Otin M; Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Feb; 1247(1):74-80. PubMed ID: 7873594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolization of Free Oxidized Aromatic Amino Acids by
    Behringer KI; Kapeluch J; Fischer A; Hellwig M
    J Agric Food Chem; 2024 Mar; 72(11):5766-5776. PubMed ID: 38447044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.
    Derrick S; Large PJ
    J Gen Microbiol; 1993 Nov; 139(11):2783-92. PubMed ID: 8277258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Maillard reaction and food allergies: is there a link?
    Toda M; Heilmann M; Ilchmann A; Vieths S
    Clin Chem Lab Med; 2014 Jan; 52(1):61-7. PubMed ID: 23492561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.
    Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM
    Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.