BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27900948)

  • 1. Prediction of antiepileptic drug treatment outcomes using machine learning.
    Colic S; Wither RG; Lang M; Zhang L; Eubanks JH; Bardakjian BL
    J Neural Eng; 2017 Feb; 14(1):016002. PubMed ID: 27900948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support vector machines using EEG features of cross-frequency coupling can predict treatment outcome in Mecp2-deficient mice.
    Colic S; Wither RG; Min Lang ; Zhang Liang ; Eubanks JH; Bardakjian BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5606-9. PubMed ID: 26737563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of antiepileptic drug treatment outcomes of patients with newly diagnosed epilepsy by machine learning.
    Yao L; Cai M; Chen Y; Shen C; Shi L; Guo Y
    Epilepsy Behav; 2019 Jul; 96():92-97. PubMed ID: 31121513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel selection for epilepsy seizure prediction method based on machine learning.
    Chang NF; Chen TC; Chiang CY; Chen LG
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5162-5. PubMed ID: 23367091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic identification of epileptic electroencephalography signals using higher-order spectra.
    Chua KC; Chandran V; Acharya UR; Lim CM
    Proc Inst Mech Eng H; 2009 May; 223(4):485-95. PubMed ID: 19499838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of HFOs in short and long duration discharges recorded from in-vivo MeCP2-deficient mice.
    Colic S; Lang M; Wither RG; Liang Z; Eubanks JH; Bardakjian BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4603-6. PubMed ID: 25571017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral state classification in epileptic brain using intracranial electrophysiology.
    Kremen V; Duque JJ; Brinkmann BH; Berry BM; Kucewicz MT; Khadjevand F; Van Gompel J; Stead M; St Louis EK; Worrell GA
    J Neural Eng; 2017 Apr; 14(2):026001. PubMed ID: 28050973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques.
    Fergus P; Hignett D; Hussain A; Al-Jumeily D; Abdel-Aziz K
    Biomed Res Int; 2015; 2015():986736. PubMed ID: 25710040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMD-Based Temporal and Spectral Features for the Classification of EEG Signals Using Supervised Learning.
    Riaz F; Hassan A; Rehman S; Niazi IK; Dremstrup K
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):28-35. PubMed ID: 26068546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for detection of interictal epileptiform discharges.
    da Silva Lourenço C; Tjepkema-Cloostermans MC; van Putten MJAM
    Clin Neurophysiol; 2021 Jul; 132(7):1433-1443. PubMed ID: 34023625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG under anesthesia--feature extraction with TESPAR.
    Moca VV; Scheller B; Mureşan RC; Daunderer M; Pipa G
    Comput Methods Programs Biomed; 2009 Sep; 95(3):191-202. PubMed ID: 19371961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal.
    Shiao HT; Cherkassky V; Lee J; Veber B; Patterson EE; Brinkmann BH; Worrell GA
    IEEE Trans Biomed Eng; 2017 May; 64(5):1011-1022. PubMed ID: 27362758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time epileptic seizure prediction using AR models and support vector machines.
    Chisci L; Mavino A; Perferi G; Sciandrone M; Anile C; Colicchio G; Fuggetta F
    IEEE Trans Biomed Eng; 2010 May; 57(5):1124-32. PubMed ID: 20172805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG.
    Chen D; Wan S; Bao FS
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):413-425. PubMed ID: 28113594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machines for seizure detection in an animal model of chronic epilepsy.
    Nandan M; Talathi SS; Myers S; Ditto WL; Khargonekar PP; Carney PR
    J Neural Eng; 2010 Jun; 7(3):036001. PubMed ID: 20404397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Multiple Seizure-Like States in Three Different Rodent Models of Epileptogenesis.
    Guirgis M; Serletis D; Zhang J; Florez C; Dian JA; Carlen PL; Bardakjian BL
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):21-32. PubMed ID: 23771347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks.
    Acir N; Oztura I; Kuntalp M; Baklan B; Güzeliş C
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):30-40. PubMed ID: 15651562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines.
    Derya Ubeyli E
    Comput Biol Med; 2008 Jan; 38(1):14-22. PubMed ID: 17651716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying machine learning to gait analysis data for disease identification.
    Joyseeree R; Abou Sabha R; Mueller H
    Stud Health Technol Inform; 2015; 210():850-4. PubMed ID: 25991275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning for Outcome Prediction in Electroencephalograph (EEG)-Monitored Children in the Intensive Care Unit.
    Sánchez Fernández I; Sansevere AJ; Gaínza-Lein M; Kapur K; Loddenkemper T
    J Child Neurol; 2018 Jul; 33(8):546-553. PubMed ID: 29756499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.