These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27901151)

  • 1. Improving the charge carrier transport of organic solar cells by incorporating a deep energy level molecule.
    Liu C; Li Z; Zhang Z; Zhang X; Shen L; Guo W; Zhang L; Long Y; Ruan S
    Phys Chem Chem Phys; 2016 Dec; 19(1):245-250. PubMed ID: 27901151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Efficiency Improvement in Organic Solar Cells Based on a Poly(3-hexylthiophene) Donor and an Indene-C60 Bisadduct Acceptor with Additional Donor Nanowires.
    Joe SY; Yim JH; Ryu SY; Ha NY; Ahn YH; Park JY; Lee S
    Chemphyschem; 2015 Apr; 16(6):1217-22. PubMed ID: 25760990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells.
    Cheng YJ; Hsieh CH; He Y; Hsu CS; Li Y
    J Am Chem Soc; 2010 Dec; 132(49):17381-3. PubMed ID: 21090653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy.
    An Q; Zhang F; Li L; Wang J; Sun Q; Zhang J; Tang W; Deng Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3691-8. PubMed ID: 25623199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced performance of polymer solar cells by employing a ternary cascade energy structure.
    An Q; Zhang F; Li L; Zhuo Z; Zhang J; Tang W; Teng F
    Phys Chem Chem Phys; 2014 Aug; 16(30):16103-9. PubMed ID: 24967655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient polymer solar cells based on poly(3-hexylthiophene) and indene-C₆₀ bisadduct fabricated with non-halogenated solvents.
    Guo X; Zhang M; Cui C; Hou J; Li Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8190-8. PubMed ID: 24813668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.
    Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Dimethyl Sulfoxide as Processing Additive for Improving Efficiency of Polymer Solar Cells.
    Yang BY; He DW; Zhuo ZL; Wang YS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):287-92. PubMed ID: 30221897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells.
    Guillain F; Endres J; Bourgeois L; Kahn A; Vignau L; Wantz G
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9262-7. PubMed ID: 26958706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fullerene-bisadduct acceptors for polymer solar cells.
    Li Y
    Chem Asian J; 2013 Oct; 8(10):2316-28. PubMed ID: 23853151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer.
    Arivazhagan V; Hang P; Parvathi MM; Tang Z; Khan A; Yang D; Yu X
    Nanotechnology; 2020 Jan; 31(6):065401. PubMed ID: 31627206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells.
    He Y; Chen HY; Hou J; Li Y
    J Am Chem Soc; 2010 Feb; 132(4):1377-82. PubMed ID: 20055460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased efficiency in small molecule organic solar cells through the use of a 56-π electron acceptor--methano indene fullerene.
    Ryan JW; Matsuo Y
    Sci Rep; 2015 Feb; 5():8319. PubMed ID: 25661976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material.
    Kwon H; Lim JW; Han J; Quan LN; Kim D; Shin ES; Kim E; Kim DW; Noh YY; Chung I; Kim DH
    Nanoscale; 2019 Nov; 11(41):19586-19594. PubMed ID: 31633140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved efficiency and thermal stability of ternary all-small-molecule organic solar cells by NCBA as a third component material.
    Liu Z; Wang N
    Nanoscale; 2018 Nov; 10(41):19524-19535. PubMed ID: 30320319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss.
    Wang H; Zhang Z; Yu J; Lin PC; Chueh CC; Liu X; Guang S; Qu S; Tang W
    ACS Appl Mater Interfaces; 2020 May; 12(19):21633-21640. PubMed ID: 32314906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Over 15.7% Efficiency of Ternary Organic Solar Cells by Employing Two Compatible Acceptors with Similar LUMO Levels.
    Hu Z; Yang L; Gao W; Gao J; Xu C; Zhang X; Wang Z; Tang W; Yang C; Zhang F
    Small; 2020 Apr; 16(17):e2000441. PubMed ID: 32243095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the
    Wang J; Li T; Wang X; Xiao Y; Zhong C; Wang J; Liu K; Lu X; Zhan X; Chen X
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26005-26016. PubMed ID: 31294959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.