BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27901297)

  • 1. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback.
    Hovel RA; Carlson SM; Quinn TP
    Glob Chang Biol; 2017 Jun; 23(6):2308-2320. PubMed ID: 27901297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local variation in the timing and advancement of lake ice breakup and impacts on settling dynamics in a migratory waterbird.
    Pöysä H
    Sci Total Environ; 2022 Mar; 811():151397. PubMed ID: 34740659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use.
    Caldwell TJ; Chandra S; Feher K; Simmons JB; Hogan Z
    Glob Chang Biol; 2020 Oct; 26(10):5475-5491. PubMed ID: 32602183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
    Jones NT; Gilbert B
    J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conditions during early life influence seasonal maternal strategies in the three-spined stickleback.
    Kim SY; Metcalfe NB; da Silva A; Velando A
    BMC Ecol; 2017 Nov; 17(1):34. PubMed ID: 29126411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice-cover effects on competitive interactions between two fish species.
    Helland IP; Finstad AG; Forseth T; Hesthagen T; Ugedal O
    J Anim Ecol; 2011 May; 80(3):539-47. PubMed ID: 21198589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau.
    Tao J; He D; Kennard MJ; Ding C; Bunn SE; Liu C; Jia Y; Che R; Chen Y
    Glob Chang Biol; 2018 May; 24(5):2093-2104. PubMed ID: 29331066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes.
    Creed IF; Bergström AK; Trick CG; Grimm NB; Hessen DO; Karlsson J; Kidd KA; Kritzberg E; McKnight DM; Freeman EC; Senar OE; Andersson A; Ask J; Berggren M; Cherif M; Giesler R; Hotchkiss ER; Kortelainen P; Palta MM; Vrede T; Weyhenmeyer GA
    Glob Chang Biol; 2018 Aug; 24(8):3692-3714. PubMed ID: 29543363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of climate and demography on reproductive phenology of a harvested marine fish population.
    Rogers LA; Dougherty AB
    Glob Chang Biol; 2019 Feb; 25(2):708-720. PubMed ID: 30430699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.
    Carey MP; Zimmerman CE
    Ecol Evol; 2014 May; 4(10):1981-93. PubMed ID: 24963391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.
    McDermott ME; DeGroote LW
    Glob Chang Biol; 2016 Oct; 22(10):3304-19. PubMed ID: 27195453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated mercury concentrations in fish in lakes in the Mackenzie River Basin: the role of physical, chemical, and biological factors.
    Evans MS; Lockhart WL; Doetzel L; Low G; Muir D; Kidd K; Stephens G; Delaronde J
    Sci Total Environ; 2005 Dec; 351-352():479-500. PubMed ID: 16183101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pattern of early growth trajectories affects adult breeding performance.
    Lee WS; Monaghan P; Metcalfe NB
    Ecology; 2012 Apr; 93(4):902-12. PubMed ID: 22690640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity in reproductive seasonality in the three-spined stickleback,
    Ishikawa A; Kitano J
    J Exp Biol; 2020 Feb; 223(Pt Suppl 1):. PubMed ID: 32034046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of Infections in the Threespine Stickleback (Gasterosteus aculeatus) by Schistocephalus solidus in Alaska.
    Heins DC; Eidam DM; Baker JA
    J Parasitol; 2016 Apr; 102(2):286-9. PubMed ID: 26654283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.
    Linton DM; Macdonald DW
    J Anim Ecol; 2018 Jul; 87(4):1080-1090. PubMed ID: 29635800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs.
    Hébert MP; Beisner BE; Rautio M; Fussmann GF
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird.
    Bowers EK; Grindstaff JL; Soukup SS; Drilling NE; Eckerle KP; Sakaluk SK; Thompson CF
    Ecology; 2016 Oct; 97(10):2880-2891. PubMed ID: 27859132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.