BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27901297)

  • 21. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing.
    Benard MF
    Glob Chang Biol; 2015 Mar; 21(3):1058-65. PubMed ID: 25263760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in rheotactic responses contribute to divergent habitat use between parapatric lake and stream threespine stickleback.
    Jiang Y; Torrance L; Peichel CL; Bolnick DI
    Evolution; 2015 Sep; 69(9):2517-24. PubMed ID: 26222907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.
    Lynch AJ; Taylor WW; Smith KD
    J Fish Biol; 2010 Nov; 77(8):1764-82. PubMed ID: 21078089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns and trends in Southern Ontario lake ice phenology.
    Futter MN
    Environ Monit Assess; 2003; 88(1-3):431-44. PubMed ID: 14570428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What caused the spatial heterogeneity of lake ice phenology changes on the Tibetan Plateau?
    Cai Y; Ke CQ; Xiao Y; Wu J
    Sci Total Environ; 2022 Aug; 836():155517. PubMed ID: 35483456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advancing breeding in stickleback (Gasterosteus aculeatus) to produce two reproductive cycles per year.
    Sattler JL; Boughman JW
    J Fish Biol; 2020 Nov; 97(5):1576-1581. PubMed ID: 32869321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Demographic consequences of increased winter births in a large aseasonally breeding mammal (Bos taurus) in response to climate change.
    Burthe S; Butler A; Searle KR; Hall SJ; Thackeray SJ; Wanless S
    J Anim Ecol; 2011 Nov; 80(6):1134-44. PubMed ID: 21668894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual fitness and the effects of a changing climate on the cessation and length of the breeding period using a 34-year study of a temperate songbird.
    Tarwater CE; Arcese P
    Glob Chang Biol; 2018 Mar; 24(3):1212-1223. PubMed ID: 28869682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carry-over effects of early thermal conditions on somatic and germline oxidative damages are mediated by compensatory growth in sticklebacks.
    Kim SY; Noguera JC; Velando A
    J Anim Ecol; 2019 Mar; 88(3):473-483. PubMed ID: 30548846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding.
    Hinsley SA; Bellamy PE; Hill RA; Ferns PN
    PLoS One; 2016; 11(5):e0155241. PubMed ID: 27182711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. When to start and when to stop: Effects of climate on breeding in a multi-brooded songbird.
    Lv L; Liu Y; Osmond HL; Cockburn A; Kruuk LEB
    Glob Chang Biol; 2020 Feb; 26(2):443-457. PubMed ID: 31581368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in breeding phenology and population size of birds.
    Dunn PO; Møller AP
    J Anim Ecol; 2014 May; 83(3):729-39. PubMed ID: 24117440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate warming accelerates somatic growth of an Arctic fish species in high-latitude lakes.
    Kotowych N; Smalås A; Amundsen PA; Primicerio R
    Sci Rep; 2023 Oct; 13(1):16749. PubMed ID: 37798382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Great tits lay increasingly smaller clutches than selected for: a study of climate- and density-related changes in reproductive traits.
    Ahola MP; Laaksonen T; Eeva T; Lehikoinen E
    J Anim Ecol; 2009 Nov; 78(6):1298-306. PubMed ID: 19682140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Earlier ice loss accelerates lake warming in the Northern Hemisphere.
    Li X; Peng S; Xi Y; Woolway RI; Liu G
    Nat Commun; 2022 Sep; 13(1):5156. PubMed ID: 36056046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice phenology interactions with water and air temperatures in high mountain lakes.
    Sabás I; Miró A; Piera J; Catalan J; Camarero L; Buchaca T; Ventura M
    Sci Total Environ; 2024 Sep; 941():173571. PubMed ID: 38830415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential investment in pre- and post-mating male sexual traits in response to prolonged exposure to ambient UVB radiation in a fish.
    Vitt S; Bakker TCM; Rick IP
    Sci Total Environ; 2020 Apr; 712():136341. PubMed ID: 31931223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal regimes of Rocky Mountain lakes warm with climate change.
    Roberts JJ; Fausch KD; Schmidt TS; Walters DM
    PLoS One; 2017; 12(7):e0179498. PubMed ID: 28683083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine-scale monitoring of lake ice phenology by synthesizing remote sensed and climatologic features based on high-resolution satellite constellation and modeling.
    Tong J; Lin Y; Fan C; Liu K; Chen T; Zeng F; Zhan P; Ke L; Gao Y; Song C
    Sci Total Environ; 2024 Feb; 912():169002. PubMed ID: 38040347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.