These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 27901297)

  • 41. Reproductive success in a natural population of male three-spined stickleback Gasterosteus aculeatus: effects of nuptial colour, parasites and body size.
    Sparkes TC; Rush V; Kopp DA; Foster SA
    J Fish Biol; 2013 May; 82(5):1720-7. PubMed ID: 23639166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Climate change affects the duration of the reproductive season in birds.
    Møller AP; Flensted-Jensen E; Klarborg K; Mardal W; Nielsen JT
    J Anim Ecol; 2010 Jul; 79(4):777-84. PubMed ID: 20202013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: implications for susceptibility to climate change.
    Monteiro N; Cunha M; Ferreira L; Vieira N; Antunes A; Lyons D; Jones AG
    Glob Chang Biol; 2017 Sep; 23(9):3600-3609. PubMed ID: 28107778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Within-lake habitat heterogeneity mediates community response to warming trends.
    Hovel RA; Thorson JT; Carter JL; Quinn TP
    Ecology; 2017 Sep; 98(9):2333-2342. PubMed ID: 28664599
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation.
    Burger C; Belskii E; Eeva T; Laaksonen T; Mägi M; Mänd R; Qvarnström A; Slagsvold T; Veen T; Visser ME; Wiebe KL; Wiley C; Wright J; Both C
    J Anim Ecol; 2012 Jul; 81(4):926-36. PubMed ID: 22356622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stronger sexual selection in warmer waters: the case of a sex role reversed pipefish.
    Monteiro NM; Lyons DO
    PLoS One; 2012; 7(8):e44251. PubMed ID: 22952940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental concentrations of an androgenic progestin disrupts the seasonal breeding cycle in male three-spined stickleback (Gasterosteus aculeatus).
    Svensson J; Fick J; Brandt I; Brunström B
    Aquat Toxicol; 2014 Feb; 147():84-91. PubMed ID: 24378470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.
    Budy P; Luecke C
    Oecologia; 2014 Sep; 176(1):81-94. PubMed ID: 24969617
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plastic response to a proxy cue of predation risk when direct cues are unreliable.
    Miehls AL; McAdam AG; Bourdeau PE; Peacor SD
    Ecology; 2013 Oct; 94(10):2237-48. PubMed ID: 24358710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A dynamic-bioenergetics model to assess depth selection and reproductive growth by lake trout (Salvelinus namaycush).
    Plumb JM; Blanchfield PJ; Abrahams MV
    Oecologia; 2014 Jun; 175(2):549-63. PubMed ID: 24682254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mercury trends in predatory fish in Great Slave Lake: the influence of temperature and other climate drivers.
    Evans M; Muir D; Brua RB; Keating J; Wang X
    Environ Sci Technol; 2013 Nov; 47(22):12793-801. PubMed ID: 24111928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards.
    Clarke DN; Zani PA
    J Exp Biol; 2012 Apr; 215(Pt 7):1117-27. PubMed ID: 22399656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses.
    Starks E; Cooper R; Leavitt PR; Wissel B
    Glob Chang Biol; 2014 Apr; 20(4):1032-42. PubMed ID: 23960001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short winters threaten temperate fish populations.
    Farmer TM; Marschall EA; Dabrowski K; Ludsin SA
    Nat Commun; 2015 Jul; 6():7724. PubMed ID: 26173734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Climate-associated decline of body condition in a fossorial salamander.
    Moldowan PD; Tattersall GJ; Rollinson N
    Glob Chang Biol; 2022 Mar; 28(5):1725-1739. PubMed ID: 34542922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.
    Cline TJ; Bennington V; Kitchell JF
    PLoS One; 2013; 8(4):e62279. PubMed ID: 23638023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Caribou, water, and ice - fine-scale movements of a migratory arctic ungulate in the context of climate change.
    Leblond M; St-Laurent MH; Côté SD
    Mov Ecol; 2016; 4():14. PubMed ID: 27099756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies.
    Johansson J; Smith HG; Jonzén N
    J Anim Ecol; 2014 Mar; 83(2):440-9. PubMed ID: 24237260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interspawning interval of wild female three-spined stickleback Gasterosteus aculeatus in Alaska.
    Brown-Peterson NJ; Heins DC
    J Fish Biol; 2009 Jul; 74(10):2299-312. PubMed ID: 20735554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.