These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27901343)

  • 1. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers-Possibilities for Detecting Carotenoids of Psychrophiles on Mars?
    Jehlička J; Culka A; Nedbalová L
    Astrobiology; 2016 Dec; 16(12):913-924. PubMed ID: 27901343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers.
    Malherbe C; Hutchinson IB; McHugh M; Ingley R; Jehlička J; Edwards HGM
    Astrobiology; 2017 Apr; 17(4):351-362. PubMed ID: 28418705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography.
    Osterrothová K; Culka A; Němečková K; Kaftan D; Nedbalová L; Procházková L; Jehlička J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():262-271. PubMed ID: 30658280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation.
    Remias D; Karsten U; Lütz C; Leya T
    Protoplasma; 2010 Jul; 243(1-4):73-86. PubMed ID: 20229328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of carotenoids of halophilic prokaryotes in solid inclusions inside laboratory-grown chloride and sulfate crystals using a portable Raman spectrometer: applications for Mars exploration.
    Culka A; Košek F; Oren A; Mana L; Jehlička J
    FEMS Microbiol Lett; 2019 Oct; 366(20):. PubMed ID: 31804687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow.
    Remias D; Pichrtová M; Pangratz M; Lütz C; Holzinger A
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw030. PubMed ID: 26884467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ice nucleation activity of extremophilic algae.
    Kviderova J; Hajek J; Worland RM
    Cryo Letters; 2013; 34(2):137-48. PubMed ID: 23625082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and quantification of snow algae with an airborne imaging spectrometer.
    Painter TH; Duval B; Thomas WH; Mendez M; Heintzelman S; Dozier J
    Appl Environ Microbiol; 2001 Nov; 67(11):5267-72. PubMed ID: 11679355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan.
    Nakashima T; Uetake J; Segawa T; Procházková L; Tsushima A; Takeuchi N
    Front Plant Sci; 2021; 12():689119. PubMed ID: 34290725
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Procházková L; Remias D; Řezanka T; Nedbalová L
    Fottea (Praha); 2018 Mar; 18(1):1-18. PubMed ID: 30976329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snow and Glacial Algae: A Review
    Hoham RW; Remias D
    J Phycol; 2020 Apr; 56(2):264-282. PubMed ID: 31825096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast outdoor screening and discrimination of carotenoids of halophilic microorganisms using miniaturized Raman spectrometers.
    Culka A; Jehlička J; Oren A; Rousaki A; Vandenabeele P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121156. PubMed ID: 35390753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecophysiological and morphological comparison of two populations of
    Procházková L; Remias D; Holzinger A; Řezanka T; Nedbalová L
    Eur J Phycol; 2018; 53(2):230-243. PubMed ID: 29755214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Miniaturized Raman Spectrometers for Discrimination of Carotenoids of Halophilic Microorganisms.
    Jehlička J; Culka A; Mana L; Oren A
    Front Microbiol; 2019; 10():1155. PubMed ID: 31191483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Visualization of Pigment in Haematococcus pluvialis by Raman Spectroscopy Technique.
    Shao Y; Gu W; Jiang L; Zhu Y; Gong A
    Sci Rep; 2019 Aug; 9(1):12097. PubMed ID: 31431631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates.
    Jehlička J; Culka A; Mana L; Oren A
    Anal Bioanal Chem; 2018 Jul; 410(18):4437-4443. PubMed ID: 29725727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Blood-rain and blood-snow: nitrogen-deficient cells of haematococcus pluvialis and chlamydomonas nivalis].
    Czygan FC
    Arch Mikrobiol; 1970 Oct; 74(1):69-76. PubMed ID: 5486496
    [No Abstract]   [Full Text] [Related]  

  • 18. LC-MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers.
    Řezanka T; Nedbalová L; Kolouchová I; Sigler K
    Phytochemistry; 2013 Apr; 88():34-42. PubMed ID: 23398889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy.
    Winters YD; Lowenstein TK; Timofeeff MN
    Astrobiology; 2013 Nov; 13(11):1065-80. PubMed ID: 24283928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms.
    Harrold ZR; Hausrath EM; Garcia AH; Murray AE; Tschauner O; Raymond JA; Huang S
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.