These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2790135)

  • 1. Spatial order as a source of kinetic cooperativity in organized bound enzyme systems.
    Ricard J; Kellershohn N; Mulliert G
    Biophys J; 1989 Sep; 56(3):477-87. PubMed ID: 2790135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular organization and clustering of cell-wall-bound enzymes as a source of kinetic apparent co-operativity.
    Dussert C; Mulliert G; Kellershohn N; Ricard J; Giordani R; Noat G; Palmari J; Rasigni M; Llebaria A; Rasigni G
    Eur J Biochem; 1989 Nov; 185(2):281-90. PubMed ID: 2583183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics aspects of long distance functional interactions between membrane-bound enzymes.
    Ricard J; Kellershohn N; Mulliert G
    J Theor Biol; 1992 May; 156(1):1-40. PubMed ID: 1640717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel electrostatic approach to enzyme mechanisms: carbonic anhydrase as an example.
    Ressler N
    Physiol Chem Phys Med NMR; 1993; 25(1):27-40. PubMed ID: 8316583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic estimate of cooperative binding of substrate on a single oligomeric enzyme: an index of cooperativity.
    Banerjee K; Das B; Gangopadhyay G
    J Chem Phys; 2012 Apr; 136(15):154502. PubMed ID: 22519331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of kinetic parameters when modifiers are bound in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2010 Feb; 114(4):1684-9. PubMed ID: 20055362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electromechanical model of an enzyme-substrate kompleksa].
    RomanovskiÄ­ IuM; Tikhomirova NK; Khurgin IuI
    Biofizika; 1979; 24(3):442-7. PubMed ID: 465551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics of protein side chains and enzyme-substrate interaction.
    Sitnitsky AE
    J Biomol Struct Dyn; 1994 Oct; 12(2):475-86. PubMed ID: 7702781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 1. Thermodynamics of subunit interactions, partition functions and enzyme reaction rate.
    Ricard J; Giudici-Orticoni MT; Buc J
    Eur J Biochem; 1990 Dec; 194(2):463-73. PubMed ID: 2269278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonproductive binding on the kinetics of enzymatic reactions with patterned substrates.
    Nag A; Zhao T; Dinner AR
    J Chem Phys; 2007 Jan; 126(3):035103. PubMed ID: 17249902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady state enzyme kinetics for systems with three enzyme-binding species.
    Czerlinski GH
    Physiol Chem Phys Med NMR; 1986; 18(3):189-96. PubMed ID: 3588696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes.
    Wang B; Li SL; Truhlar DG
    J Chem Theory Comput; 2014 Dec; 10(12):5640-50. PubMed ID: 26583247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment.
    Elcock AH; Huber GA; McCammon JA
    Biochemistry; 1997 Dec; 36(51):16049-58. PubMed ID: 9405038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of affinity modification kinetics as an approach to demonstrating cooperativity between substrate-recognition centers of bicentric enzymes].
    Beznedel'naia NI; Gorshkova II; Lavrik OI
    Mol Biol (Mosk); 1981; 15(5):1102-8. PubMed ID: 7029243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical model of the transport of charged molecules through the capillary glycocalyx.
    Stace TM; Damiano ER
    Biophys J; 2001 Apr; 80(4):1670-90. PubMed ID: 11259282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reactions systems. II. Charged substrates.
    Kuo-chen C; Chih-kun K
    Sci Sin; 1975; 18(3):367-80. PubMed ID: 1198092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic approach to the kinetics of pattern formation of charged molecules on surfaces.
    Kuzovkov VN; Zvejnieks G; Kotomin EA; Olvera de la Cruz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021602. PubMed ID: 20866821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF; Bader RF
    Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.