These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2790142)

  • 1. Fast optical monitoring of microscopic excitation patterns in cardiac muscle.
    Müller W; Windisch H; Tritthart HA
    Biophys J; 1989 Sep; 56(3):623-9. PubMed ID: 2790142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence monitoring of rapid changes in membrane potential in heart muscle.
    Windisch H; Müller W; Tritthart HA
    Biophys J; 1985 Dec; 48(6):877-84. PubMed ID: 2418888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical recording system based on a fiber optic image conduit: assessment of microscopic activation patterns in cardiac tissue.
    Rohr S; Kucera JP
    Biophys J; 1998 Aug; 75(2):1062-75. PubMed ID: 9675208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring activation patterns of the heart at a microscopic size scale with thin-film sensors.
    Hofer E; Urban G; Spach MS; Schafferhofer I; Mohr G; Platzer D
    Am J Physiol; 1994 May; 266(5 Pt 2):H2136-45. PubMed ID: 8203613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new real-time mapping system to detect microscopic cardiac excitation patterns.
    Mohr G; Hofer E; Plank G
    Biomed Instrum Technol; 1999; 33(5):455-61. PubMed ID: 10511916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between ventricular cells during the early part of excitation in the ferret heart.
    Suenson M
    Acta Physiol Scand; 1985 Sep; 125(1):81-90. PubMed ID: 4050489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 May; 29(5):697-707. PubMed ID: 7606760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures.
    Rohr S; Salzberg BM
    J Gen Physiol; 1994 Aug; 104(2):287-309. PubMed ID: 7807050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electric activation of the heart using laser spectrometry. 1. Study of transmembrane action potentials using optical technics].
    Fillette F; Nassif G; Lascault G
    Arch Mal Coeur Vaiss; 1985 Sep; 78(9):1418-24. PubMed ID: 3936445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of electrical activation of the heart by laser spectrometry. An optical study of cellular action potentials.
    Fillette F; Nassif G
    Int J Card Imaging; 1987; 2(3):165-72. PubMed ID: 3429940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale.
    Rohr S; Salzberg BM
    Biophys J; 1994 Sep; 67(3):1301-15. PubMed ID: 7811945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system.
    Entcheva E; Kostov Y; Tchernev E; Tung L
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):333-41. PubMed ID: 14765706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes.
    Windisch H; Ahammer H; Schaffer P; Müller W; Platzer D
    Pflugers Arch; 1995 Aug; 430(4):508-18. PubMed ID: 7491277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of shock-induced microscopic virtual electrodes assessed by subcellular resolution optical potential mapping in guinea pig papillary muscle.
    Windisch H; Platzer D; Bilgici E
    J Cardiovasc Electrophysiol; 2007 Sep; 18(10):1086-94. PubMed ID: 17655676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic conduction in monolayers of neonatal rat heart cells cultured on collagen substrate.
    Fast VG; Kléber AG
    Circ Res; 1994 Sep; 75(3):591-5. PubMed ID: 8062430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multiple site optical recording of transmembrane voltage.
    Rohr S
    J Cardiovasc Electrophysiol; 1995 Jul; 6(7):551-68. PubMed ID: 8528490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pinacidil-primed ATP-sensitive potassium channels mediate feedback control of mechanical power output in isolated myocardium of rats and guinea pigs.
    Schmid D; Staudacher DL; Plass CA; Loew HG; Fritz E; Steurer G; Chiba P; Moeslinger T
    Eur J Pharmacol; 2010 Feb; 628(1-3):116-27. PubMed ID: 19925786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Beta-adrenergic modulation of cardiac Na+ current].
    Kiyosue T; Muramatsu H; Arita M; Ishikawa T; Hidaka H
    Jpn Circ J; 1992; 56 Suppl 5():1339-43. PubMed ID: 1337920
    [No Abstract]   [Full Text] [Related]  

  • 19. Sarcomere length-active force relations in living mammalian cardiac muscle.
    Pollack GH; Huntsman LL
    Am J Physiol; 1974 Aug; 227(2):383-9. PubMed ID: 4854194
    [No Abstract]   [Full Text] [Related]  

  • 20. [Relation between the shape of cellular action potentials and strength of contraction of the myocardium].
    Lewartowski B; Czarnecka M
    Acta Physiol Pol; 1970; 21(1):1-14. PubMed ID: 5417358
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.