These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27903626)

  • 1. A unified perspective on ankle push-off in human walking.
    Zelik KE; Adamczyk PG
    J Exp Biol; 2016 Dec; 219(Pt 23):3676-3683. PubMed ID: 27903626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impulsive ankle push-off powers leg swing in human walking.
    Lipfert SW; Günther M; Renjewski D; Seyfarth A
    J Exp Biol; 2014 Apr; 217(Pt 8):1218-28. PubMed ID: 24363410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decline in gait propulsion in older adults over age decades.
    Sloot LH; Malheiros S; Truijen S; Saeys W; Mombaur K; Hallemans A; van Criekinge T
    Gait Posture; 2021 Oct; 90():475-482. PubMed ID: 34619614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.
    Soo CH; Donelan JM
    Gait Posture; 2012 Feb; 35(2):292-7. PubMed ID: 22030156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Horizontal Impeding Force Gait Training on Older Adult Push-Off Intensity.
    Conway KA; Crudup KL; Lewek MD; Franz JR
    Med Sci Sports Exerc; 2021 Mar; 53(3):574-580. PubMed ID: 33560768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation Analysis of Impulsive Ankle Push-Off on the Walking Speed of a Planar Biped Robot.
    Ji Q; Qian Z; Ren L; Ren L
    Front Bioeng Biotechnol; 2020; 8():621560. PubMed ID: 33511106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of toe joint stiffness and toe shape on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Bioinspir Biomim; 2018 Oct; 13(6):066007. PubMed ID: 30187893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of age and locomotor demand on foot mechanics during walking.
    Krupenevich RL; Clark WH; Ray SF; Takahashi KZ; Kashefsky HE; Franz JR
    J Biomech; 2021 Jun; 123():110499. PubMed ID: 34015739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does ankle push-off correct for errors in anterior-posterior foot placement relative to center-of-mass states?
    Jin J; van Dieën JH; Kistemaker D; Daffertshofer A; Bruijn SM
    PeerJ; 2023; 11():e15375. PubMed ID: 37273538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can shank acceleration provide a clinically feasible surrogate for individual limb propulsion during walking?
    Pieper NL; Lewek MD; Franz JR
    J Biomech; 2020 Jan; 98():109449. PubMed ID: 31679756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling energy to restore impaired ankle function during human walking.
    Collins SH; Kuo AD
    PLoS One; 2010 Feb; 5(2):e9307. PubMed ID: 20174659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.