These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 27903630)
1. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Martí-Raga M; Peltier E; Mas A; Beltran G; Marullo P G3 (Bethesda); 2017 Feb; 7(2):399-412. PubMed ID: 27903630 [TBL] [Abstract][Full Text] [Related]
2. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. Brion C; Ambroset C; Sanchez I; Legras JL; Blondin B BMC Genomics; 2013 Oct; 14():681. PubMed ID: 24094006 [TBL] [Abstract][Full Text] [Related]
3. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526 [TBL] [Abstract][Full Text] [Related]
4. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite. Zimmer A; Durand C; Loira N; Durrens P; Sherman DJ; Marullo P PLoS One; 2014; 9(1):e86298. PubMed ID: 24489712 [TBL] [Abstract][Full Text] [Related]
5. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. Peltier E; Sharma V; Martí Raga M; Roncoroni M; Bernard M; Jiranek V; Gibon Y; Marullo P BMC Genomics; 2018 Nov; 19(1):772. PubMed ID: 30409183 [TBL] [Abstract][Full Text] [Related]
6. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations. Greetham D; Wimalasena TT; Leung K; Marvin ME; Chandelia Y; Hart AJ; Phister TG; Tucker GA; Louis EJ; Smart KA PLoS One; 2014; 9(8):e103233. PubMed ID: 25116161 [TBL] [Abstract][Full Text] [Related]
7. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607 [TBL] [Abstract][Full Text] [Related]
8. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. Marullo P; Aigle M; Bely M; Masneuf-Pomarède I; Durrens P; Dubourdieu D; Yvert G FEMS Yeast Res; 2007 Sep; 7(6):941-52. PubMed ID: 17537182 [TBL] [Abstract][Full Text] [Related]
9. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. Luo X; Fu Y; Zhang P; Wu S; Tian F; Liu J; Zhu Z; Yang J; Sun C J Integr Plant Biol; 2009 Apr; 51(4):393-408. PubMed ID: 21452591 [TBL] [Abstract][Full Text] [Related]
10. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Li X; Li X; Fridman E; Tesso TT; Yu J Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11823-8. PubMed ID: 26351684 [TBL] [Abstract][Full Text] [Related]
11. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
12. Natural allelic variations of Saccharomyces cerevisiae impact stuck fermentation due to the combined effect of ethanol and temperature; a QTL-mapping study. Marullo P; Durrens P; Peltier E; Bernard M; Mansour C; Dubourdieu D BMC Genomics; 2019 Aug; 20(1):680. PubMed ID: 31462217 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. Thiemann A; Fu J; Seifert F; Grant-Downton RT; Schrag TA; Pospisil H; Frisch M; Melchinger AE; Scholten S BMC Plant Biol; 2014 Apr; 14():88. PubMed ID: 24693880 [TBL] [Abstract][Full Text] [Related]
14. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. Swinnen S; Thevelein JM; Nevoigt E FEMS Yeast Res; 2012 Mar; 12(2):215-27. PubMed ID: 22150948 [TBL] [Abstract][Full Text] [Related]
15. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. da Silva T; Albertin W; Dillmann C; Bely M; la Guerche S; Giraud C; Huet S; Sicard D; Masneuf-Pomarede I; de Vienne D; Marullo P PLoS One; 2015; 10(5):e0123834. PubMed ID: 25946464 [TBL] [Abstract][Full Text] [Related]
16. Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production. Di Gianvito P; Perpetuini G; Tittarelli F; Schirone M; Arfelli G; Piva A; Patrignani F; Lanciotti R; Olivastri L; Suzzi G; Tofalo R Food Res Int; 2018 Jul; 109():552-560. PubMed ID: 29803483 [TBL] [Abstract][Full Text] [Related]
17. A systematic dissection in oilseed rape provides insights into the genetic architecture and molecular mechanism of yield heterosis. Ye J; Liang H; Zhao X; Li N; Song D; Zhan J; Liu J; Wang X; Tu J; Varshney RK; Shi J; Wang H Plant Biotechnol J; 2023 Jul; 21(7):1479-1495. PubMed ID: 37170717 [TBL] [Abstract][Full Text] [Related]
18. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids. Li L; He X; Zhang H; Wang Z; Sun C; Mou T; Li X; Zhang Y; Hu Z J Genet; 2015 Jun; 94(2):261-70. PubMed ID: 26174673 [TBL] [Abstract][Full Text] [Related]
19. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. Jara M; Cubillos FA; García V; Salinas F; Aguilera O; Liti G; Martínez C PLoS One; 2014; 9(1):e86533. PubMed ID: 24466135 [TBL] [Abstract][Full Text] [Related]
20. Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation. Lopandic K; Pfliegler WP; Tiefenbrunner W; Gangl H; Sipiczki M; Sterflinger K Appl Microbiol Biotechnol; 2016 Jul; 100(14):6331-6343. PubMed ID: 27075738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]