These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27903632)

  • 1. Genomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico.
    Sukumaran S; Crossa J; Jarquin D; Lopes M; Reynolds MP
    G3 (Bethesda); 2017 Feb; 7(2):481-495. PubMed ID: 27903632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat.
    Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S
    G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number.
    Sukumaran S; Lopes M; Dreisigacker S; Reynolds M
    Theor Appl Genet; 2018 Apr; 131(4):985-998. PubMed ID: 29218375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic-enabled Prediction Accuracies Increased by Modeling Genotype × Environment Interaction in Durum Wheat.
    Sukumaran S; Jarquin D; Crossa J; Reynolds M
    Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model.
    Lopez-Cruz M; Crossa J; Bonnett D; Dreisigacker S; Poland J; Jannink JL; Singh RP; Autrique E; de los Campos G
    G3 (Bethesda); 2015 Feb; 5(4):569-82. PubMed ID: 25660166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Step Genomic and Pedigree Genotype × Environment Interaction Models for Predicting Wheat Lines in International Environments.
    Pérez-Rodríguez P; Crossa J; Rutkoski J; Poland J; Singh R; Legarra A; Autrique E; Campos GL; Burgueño J; Dreisigacker S
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat.
    Shahi D; Guo J; Pradhan S; Khan J; Avci M; Khan N; McBreen J; Bai G; Reynolds M; Foulkes J; Babar MA
    BMC Genomics; 2022 Apr; 23(1):298. PubMed ID: 35413795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Predictive Accuracy of Multi-Environment Genomic Prediction Model for Yield and Related Traits in Spring Wheat (
    Tomar V; Singh D; Dhillon GS; Chung YS; Poland J; Singh RP; Joshi AK; Gautam Y; Tiwari BS; Kumar U
    Front Plant Sci; 2021; 12():720123. PubMed ID: 34691100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat.
    Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R
    G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems.
    Semagn K; Iqbal M; Crossa J; Jarquin D; Howard R; Chen H; Bemister DH; Beres BL; Randhawa H; N'Diaye A; Pozniak C; Spaner D
    Theor Appl Genet; 2022 Feb; 135(2):537-552. PubMed ID: 34724078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-trait Genomic Prediction Model Increased the Predictive Ability for Agronomic and Malting Quality Traits in Barley (
    Bhatta M; Gutierrez L; Cammarota L; Cardozo F; Germán S; Gómez-Guerrero B; Pardo MF; Lanaro V; Sayas M; Castro AJ
    G3 (Bethesda); 2020 Mar; 10(3):1113-1124. PubMed ID: 31974097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat.
    Juliana P; Montesinos-López OA; Crossa J; Mondal S; González Pérez L; Poland J; Huerta-Espino J; Crespo-Herrera L; Govindan V; Dreisigacker S; Shrestha S; Pérez-Rodríguez P; Pinto Espinosa F; Singh RP
    Theor Appl Genet; 2019 Jan; 132(1):177-194. PubMed ID: 30341493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
    Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J
    PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Trait Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding Lines of Winter Wheat.
    Gill HS; Halder J; Zhang J; Brar NK; Rai TS; Hall C; Bernardo A; Amand PS; Bai G; Olson E; Ali S; Turnipseed B; Sehgal SK
    Front Plant Sci; 2021; 12():709545. PubMed ID: 34490011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Prediction with Genotype by Environment Interaction Analysis for Kernel Zinc Concentration in Tropical Maize Germplasm.
    Mageto EK; Crossa J; Pérez-Rodríguez P; Dhliwayo T; Palacios-Rojas N; Lee M; Guo R; San Vicente F; Zhang X; Hindu V
    G3 (Bethesda); 2020 Aug; 10(8):2629-2639. PubMed ID: 32482728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Association Mapping and Genomic Prediction of Anther Extrusion in CIMMYT Hybrid Wheat Breeding Program via Modeling Pedigree, Genomic Relationship, and Interaction With the Environment.
    Adhikari A; Basnet BR; Crossa J; Dreisigacker S; Camarillo F; Bhati PK; Jarquin D; Manes Y; Ibrahim AMH
    Front Genet; 2020; 11():586687. PubMed ID: 33363570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.
    Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Selection in Winter Wheat Breeding Using a Recommender Approach.
    Lozada DN; Carter AH
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32664601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.