These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27903640)
1. Differential effect of visual motion adaption upon visual cortical excitability. Lubeck AJ; Van Ombergen A; Ahmad H; Bos JE; Wuyts FL; Bronstein AM; Arshad Q J Neurophysiol; 2017 Mar; 117(3):903-909. PubMed ID: 27903640 [TBL] [Abstract][Full Text] [Related]
2. Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation. Guzman-Lopez J; Silvanto J; Seemungal BM Clin Neurophysiol; 2011 Oct; 122(10):1951-5. PubMed ID: 21511523 [TBL] [Abstract][Full Text] [Related]
3. Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+. Silvanto J; Muggleton NG Neuroimage; 2008 May; 40(4):1841-8. PubMed ID: 18353682 [TBL] [Abstract][Full Text] [Related]
4. Vestibular activation differentially modulates human early visual cortex and V5/MT excitability and response entropy. Seemungal BM; Guzman-Lopez J; Arshad Q; Schultz SR; Walsh V; Yousif N Cereb Cortex; 2013 Jan; 23(1):12-9. PubMed ID: 22291031 [TBL] [Abstract][Full Text] [Related]
5. Probing V5/MT excitability with transcranial magnetic stimulation following visual motion adaptation to random and coherent motion. Guzman-Lopez J; Silvanto J; Yousif N; Nousi S; Quadir S; Seemungal BM Ann N Y Acad Sci; 2011 Sep; 1233():200-7. PubMed ID: 21950994 [TBL] [Abstract][Full Text] [Related]
6. Unidirectional visual motion adaptation induces reciprocal inhibition of human early visual cortex excitability. Arshad Q; Nigmatullina Y; Bronstein AM Clin Neurophysiol; 2014 Apr; 125(4):798-804. PubMed ID: 24120313 [TBL] [Abstract][Full Text] [Related]
7. Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex. Silvanto J; Cattaneo Z Neuroimage; 2010 May; 50(4):1683-9. PubMed ID: 20079448 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation. Gerwig M; Kastrup O; Meyer BU; Niehaus L J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132 [TBL] [Abstract][Full Text] [Related]
9. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756 [TBL] [Abstract][Full Text] [Related]
10. State-dependency effects on TMS: a look at motive phosphene behavior. Najib U; Horvath JC; Silvanto J; Pascual-Leone A J Vis Exp; 2010 Dec; (46):. PubMed ID: 21248686 [TBL] [Abstract][Full Text] [Related]
11. Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception. Laycock R; Crewther DP; Fitzgerald PB; Crewther SG J Neurophysiol; 2007 Sep; 98(3):1253-62. PubMed ID: 17634339 [TBL] [Abstract][Full Text] [Related]
13. Decoupling of Early V5 Motion Processing from Visual Awareness: A Matter of Velocity as Revealed by Transcranial Magnetic Stimulation. Grasso PA; Làdavas E; Bertini C; Caltabiano S; Thut G; Morand S J Cogn Neurosci; 2018 Oct; 30(10):1517-1531. PubMed ID: 29916788 [TBL] [Abstract][Full Text] [Related]
14. Downregulation of early visual cortex excitability mediates oscillopsia suppression. Ahmad H; Roberts RE; Patel M; Lobo R; Seemungal B; Arshad Q; Bronstein A Neurology; 2017 Sep; 89(11):1179-1185. PubMed ID: 28814456 [TBL] [Abstract][Full Text] [Related]
16. Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. McKeefry DJ; Burton MP; Vakrou C; Barrett BT; Morland AB J Neurosci; 2008 Jul; 28(27):6848-57. PubMed ID: 18596160 [TBL] [Abstract][Full Text] [Related]
17. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex. Samaha J; Gosseries O; Postle BR J Neurosci; 2017 Mar; 37(11):2824-2833. PubMed ID: 28179556 [TBL] [Abstract][Full Text] [Related]
18. Investigating visual motion perception using the transcranial magnetic stimulation-adaptation paradigm. Cattaneo Z; Silvanto J Neuroreport; 2008 Sep; 19(14):1423-7. PubMed ID: 18766024 [TBL] [Abstract][Full Text] [Related]
19. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation. Schaeffner LF; Welchman AE Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. Silvanto J; Lavie N; Walsh V J Neurophysiol; 2006 Aug; 96(2):941-5. PubMed ID: 16624999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]