BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2308 related articles for article (PubMed ID: 27903719)

  • 1. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory.
    Ray KL; Ragland JD; MacDonald AW; Gold JM; Silverstein SM; Barch DM; Carter CS
    Cogn Affect Behav Neurosci; 2020 Feb; 20(1):76-90. PubMed ID: 31811557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.
    Shen Ren ; Junhua Li ; Taya F; deSouza J; Thakor NV; Bezerianos A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):547-556. PubMed ID: 28113670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?
    Alavash M; Doebler P; Holling H; Thiel CM; Gießing C
    Neuroimage; 2015 Mar; 108():182-93. PubMed ID: 25536495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic reconfiguration of frontal brain networks during executive cognition in humans.
    Braun U; Schäfer A; Walter H; Erk S; Romanczuk-Seiferth N; Haddad L; Schweiger JI; Grimm O; Heinz A; Tost H; Meyer-Lindenberg A; Bassett DS
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11678-83. PubMed ID: 26324898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Default Mode Dynamics for Global Functional Integration.
    Vatansever D; Menon DK; Manktelow AE; Sahakian BJ; Stamatakis EA
    J Neurosci; 2015 Nov; 35(46):15254-62. PubMed ID: 26586814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Functional Relevance of Task-State Functional Connectivity.
    Cole MW; Ito T; Cocuzza C; Sanchez-Romero R
    J Neurosci; 2021 Mar; 41(12):2684-2702. PubMed ID: 33542083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting-State Network Patterns Underlying Cognitive Function in Bipolar Disorder: A Graph Theoretical Analysis.
    McPhilemy G; Nabulsi L; Kilmartin L; Whittaker JR; Martyn FM; Hallahan B; McDonald C; Murphy K; Cannon DM
    Brain Connect; 2020 Sep; 10(7):355-367. PubMed ID: 32458698
    [No Abstract]   [Full Text] [Related]  

  • 11. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
    Petrican R; Grady CL
    J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Reconfiguration of Functional Topology in Human Brain Networks: From Resting to Task States.
    Zhang W; Tang F; Zhou X; Li H
    Neural Plast; 2020; 2020():8837615. PubMed ID: 32963519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization.
    Westphal AJ; Wang S; Rissman J
    J Neurosci; 2017 Mar; 37(13):3523-3531. PubMed ID: 28242796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration and segregation of large-scale brain networks during short-term task automatization.
    Mohr H; Wolfensteller U; Betzel RF; Mišić B; Sporns O; Richiardi J; Ruge H
    Nat Commun; 2016 Nov; 7():13217. PubMed ID: 27808095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the Human Structural Connectome Underlying Working Memory Training.
    Caeyenberghs K; Metzler-Baddeley C; Foley S; Jones DK
    J Neurosci; 2016 Apr; 36(14):4056-66. PubMed ID: 27053212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Functional Cartography of Cognitive Systems.
    Mattar MG; Cole MW; Thompson-Schill SL; Bassett DS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004533. PubMed ID: 26629847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional brain network modularity captures inter- and intra-individual variation in working memory capacity.
    Stevens AA; Tappon SC; Garg A; Fair DA
    PLoS One; 2012; 7(1):e30468. PubMed ID: 22276205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 116.