These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Profile and bioavailability analysis of myo-inositol phosphates in rye bread supplemented with phytases: a study using an in vitro method and Caco-2 monolayers. Duliński R; Cielecka EK; Pierzchalska M; Byczyński Ł; Żyła K Int J Food Sci Nutr; 2016 Jun; 67(4):454-60. PubMed ID: 27019314 [TBL] [Abstract][Full Text] [Related]
3. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Wyss M; Brugger R; Kronenberger A; Rémy R; Fimbel R; Oesterhelt G; Lehmann M; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):367-73. PubMed ID: 9925555 [TBL] [Abstract][Full Text] [Related]
4. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread. García-Mantrana I; Monedero V; Haros M Food Chem; 2015 Jul; 178():267-75. PubMed ID: 25704711 [TBL] [Abstract][Full Text] [Related]
5. The Impact of Phytases on the Release of Bioactive Inositols, the Profile of Inositol Phosphates, and the Release of Selected Minerals in the Technology of Buckwheat Beer Production. Duliński R; Zdaniewicz M; Pater A; Poniewska D; Żyła K Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31973207 [TBL] [Abstract][Full Text] [Related]
6. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068 [TBL] [Abstract][Full Text] [Related]
8. Effects of inositol, inositol-generating phytase B applied alone, and in combination with 6-phytase A to phosphorus-deficient diets on laying performance, eggshell quality, yolk cholesterol, and fatty acid deposition in laying hens. Zyla K; Mika M; Duliński R; Swiatkiewicz S; Koreleski J; Pustkowiak H; Piironen J Poult Sci; 2012 Aug; 91(8):1915-27. PubMed ID: 22802186 [TBL] [Abstract][Full Text] [Related]
9. Extra-phosphoric effects of super dosing phytase on growth performance of pigs is not solely due to release of myo-inositol. Lu H; Cowieson AJ; Wilson JW; Ajuwon KM; Adeola O J Anim Sci; 2019 Sep; 97(9):3898-3906. PubMed ID: 31284292 [TBL] [Abstract][Full Text] [Related]
10. Dietary phytase and Gonzalez-Uarquin F; Kenéz Á; Rodehutscord M; Huber K Animal; 2020 Mar; 14(3):549-559. PubMed ID: 31610823 [TBL] [Abstract][Full Text] [Related]
11. The Influence of Arabinoxylan of Different Molar Masses on the Properties of Rye Bread Baked by the Postponed Baking Method. Bieniek A; Buksa K Foods; 2024 Aug; 13(16):. PubMed ID: 39200409 [TBL] [Abstract][Full Text] [Related]
12. Effects of super-dosing phytase and inositol on growth performance and blood metabolites of weaned pigs housed under commercial conditions1. Moran K; Wilcock P; Elsbernd A; Zier-Rush C; Boyd RD; van Heugten E J Anim Sci; 2019 Jul; 97(7):3007-3015. PubMed ID: 31069380 [TBL] [Abstract][Full Text] [Related]
13. Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model. Rodriguez-Ramiro I; Brearley CA; Bruggraber SF; Perfecto A; Shewry P; Fairweather-Tait S Food Chem; 2017 Aug; 228():91-98. PubMed ID: 28317782 [TBL] [Abstract][Full Text] [Related]
14. Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Walk CL; Bedford MR; Olukosi OA Poult Sci; 2018 Apr; 97(4):1155-1162. PubMed ID: 29444320 [TBL] [Abstract][Full Text] [Related]
15. Assessment of iron bioavailability in whole wheat bread by addition of phytase-producing bifidobacteria. Sanz-Penella JM; Laparra JM; Sanz Y; Haros M J Agric Food Chem; 2012 Mar; 60(12):3190-5. PubMed ID: 22369315 [TBL] [Abstract][Full Text] [Related]
16. Inositol phosphate phosphatases of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytases. Irving GC; Cosgrove DJ J Bacteriol; 1972 Oct; 112(1):434-8. PubMed ID: 4342816 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant contents and antioxidative properties of traditional rye breads. Michalska A; Ceglinska A; Amarowicz R; Piskula MK; Szawara-Nowak D; Zielinski H J Agric Food Chem; 2007 Feb; 55(3):734-40. PubMed ID: 17263468 [TBL] [Abstract][Full Text] [Related]
18. Effect of a high dose of exogenous phytase and supplementary myo-inositol on mineral solubility of broiler digesta and diets subjected to in vitro digestion assay. Farhadi D; Karimi A; Sadeghi AA; Rostamzadeh J; Bedford MR Poult Sci; 2019 Sep; 98(9):3870-3883. PubMed ID: 30877748 [TBL] [Abstract][Full Text] [Related]
19. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread. Cizeikiene D; Juodeikiene G; Bartkiene E; Damasius J; Paskevicius A Int J Food Sci Nutr; 2015; 66(7):736-42. PubMed ID: 26397032 [TBL] [Abstract][Full Text] [Related]
20. Effect of inositol and phytases on hematological indices and α-1 acid glycoprotein levels in laying hens fed phosphorus-deficient corn-soybean meal-based diets. Zyła K; Grabacka M; Pierzchalska M; Duliński R; Starzyńska-Janiszewska A Poult Sci; 2013 Jan; 92(1):199-204. PubMed ID: 23243248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]