BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2790456)

  • 1. Phosphoproteins localized to presynaptic terminal linked to persistence of long-term potentiation (LTP): quantitative analysis of two-dimensional gels.
    Nelson RB; Linden DJ; Routtenberg A
    Brain Res; 1989 Sep; 497(1):30-42. PubMed ID: 2790456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two major phosphoproteins in growth cones are probably identical to two protein kinase C substrates correlated with persistence of long-term potentiation.
    Nelson RB; Linden DJ; Hyman C; Pfenninger KH; Routtenberg A
    J Neurosci; 1989 Feb; 9(2):381-9. PubMed ID: 2918368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein F1, a substrate for membrane protein kinase C.
    Lovinger DM; Colley PA; Akers RF; Nelson RB; Routtenberg A
    Brain Res; 1986 Dec; 399(2):205-11. PubMed ID: 3828760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth.
    Routtenberg A
    Behav Neural Biol; 1985 Sep; 44(2):186-200. PubMed ID: 3904711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes.
    Luo Y; Vallano ML
    J Neurochem; 1995 Apr; 64(4):1808-18. PubMed ID: 7891109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes.
    Schaechter JD; Benowitz LI
    J Neurosci; 1993 Oct; 13(10):4361-71. PubMed ID: 8410192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA receptor blockade prevents the increase in protein kinase C substrate (protein F1) phosphorylation produced by long-term potentiation.
    Linden DJ; Wong KL; Sheu FS; Routtenberg A
    Brain Res; 1988 Aug; 458(1):142-6. PubMed ID: 2905192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective increase in phosphorylation of a 47-kDa protein (F1) directly related to long-term potentiation.
    Routtenberg A; Lovinger DM
    Behav Neural Biol; 1985 Jan; 43(1):3-11. PubMed ID: 3158299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the presynaptic protein B-50 (GAP-43) is increased during electrically induced long-term potentiation.
    Gianotti C; Nunzi MG; Gispen WH; Corradetti R
    Neuron; 1992 May; 8(5):843-8. PubMed ID: 1534012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased phosphorylation of a 17-kDa protein kinase C substrate (P17) in long-term potentiation.
    Klann E; Chen SJ; Sweatt JD
    J Neurochem; 1992 Apr; 58(4):1576-9. PubMed ID: 1548487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation.
    Nayak AS; Moore CI; Browning MD
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15451-6. PubMed ID: 8986832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity.
    Chan SY; Murakami K; Routtenberg A
    J Neurosci; 1986 Dec; 6(12):3618-27. PubMed ID: 3794793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate.
    Klann E; Chen SJ; Sweatt JD
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8337-41. PubMed ID: 8378303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term potentiation and synaptic protein phosphorylation.
    Pasinelli P; Ramakers GM; Urban IJ; Hens JJ; Oestreicher AB; de Graan PN; Gispen WH
    Behav Brain Res; 1995 Jan; 66(1-2):53-9. PubMed ID: 7755899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential changes in the phosphorylation of the protein kinase C substrates myristoylated alanine-rich C kinase substrate and growth-associated protein-43/B-50 following Schaffer collateral long-term potentiation and long-term depression.
    Ramakers GM; McNamara RK; Lenox RH; De Graan PN
    J Neurochem; 1999 Nov; 73(5):2175-83. PubMed ID: 10537078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface protein phosphorylation by ecto-protein kinase is required for the maintenance of hippocampal long-term potentiation.
    Chen W; Wieraszko A; Hogan MV; Yang HA; Kornecki E; Ehrlich YH
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8688-93. PubMed ID: 8710932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protected-site phosphorylation of protein kinase C in hippocampal long-term potentiation.
    Sweatt JD; Atkins CM; Johnson J; English JD; Roberson ED; Chen SJ; Newton A; Klann E
    J Neurochem; 1998 Sep; 71(3):1075-85. PubMed ID: 9721732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A selective increase in phosporylation of protein F1, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement.
    Lovinger DM; Akers RF; Nelson RB; Barnes CA; McNaughton BL; Routtenberg A
    Brain Res; 1985 Sep; 343(1):137-43. PubMed ID: 2994827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-promoted translocation of protein kinase C to synaptic membranes: relation to the phosphorylation of an endogenous substrate (protein F1) involved in synaptic plasticity.
    Akers RF; Routtenberg A
    J Neurosci; 1987 Dec; 7(12):3976-83. PubMed ID: 3121805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of protein kinase C in long-term potentiation: a testable model.
    Linden DJ; Routtenberg A
    Brain Res Brain Res Rev; 1989; 14(3):279-96. PubMed ID: 2679942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.