These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27905012)

  • 21. Epilepsy and optogenetics: can seizures be controlled by light?
    Tønnesen J; Kokaia M
    Clin Sci (Lond); 2017 Jul; 131(14):1605-1616. PubMed ID: 28667062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-induced helix movements in channelrhodopsin-2.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2015 Jan; 427(2):341-9. PubMed ID: 25451024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of GABA and glutamate transporter messenger RNAs in the severe-seizure genetically epilepsy-prone rat.
    Akbar MT; Rattray M; Williams RJ; Chong NW; Meldrum BS
    Neuroscience; 1998 Aug; 85(4):1235-51. PubMed ID: 9681960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An optogenetic approach in epilepsy.
    Kokaia M; Andersson M; Ledri M
    Neuropharmacology; 2013 Jun; 69():89-95. PubMed ID: 22698957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natronomonas pharaonis halorhodopsin Ser81 plays a role in maintaining chloride ions near the Schiff base.
    Sakajiri Y; Sugano E; Watanabe Y; Sakajiri T; Tabata K; Kikuchi T; Tomita H
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2326-2332. PubMed ID: 29964009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetic dissection of ictogenesis: in search of a targeted anti-epileptic therapy.
    Lillis KP; Staley KJ
    J Neural Eng; 2018 Aug; 15(4):041001. PubMed ID: 29536948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A halorhodopsin-overproducing mutant isolated from an extremely haloalkaliphilic archaeon Natronomonas pharaonis.
    Ihara K; Narusawa A; Maruyama K; Takeguchi M; Kouyama T
    FEBS Lett; 2008 Aug; 582(19):2931-6. PubMed ID: 18671971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2.
    Richards R; Dempski RE
    PLoS One; 2012; 7(11):e50018. PubMed ID: 23185520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic Low-Frequency Stimulation of Specific Neuronal Populations Abates Ictogenesis.
    Shiri Z; Lévesque M; Etter G; Manseau F; Williams S; Avoli M
    J Neurosci; 2017 Mar; 37(11):2999-3008. PubMed ID: 28209738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks.
    Soper C; Wicker E; Kulick CV; N'Gouemo P; Forcelli PA
    Neurobiol Dis; 2016 Mar; 87():102-15. PubMed ID: 26721319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations.
    Yang T; Zhang W; Cheng J; Nie Y; Xin Q; Yuan S; Dou Y
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Channelrhodopsins: directly light-gated cation channels.
    Nagel G; Szellas T; Kateriya S; Adeishvili N; Hegemann P; Bamberg E
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):863-6. PubMed ID: 16042615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy.
    Nack M; Radu I; Bamann C; Bamberg E; Heberle J
    FEBS Lett; 2009 Nov; 583(22):3676-80. PubMed ID: 19854176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dcf1 Improves Behavior Deficit in Drosophila and Mice Caused by Optogenetic Suppression.
    Liu Q; Gan L; Ni J; Chen Y; Chen Y; Huang Z; Huang X; Wen T
    J Cell Biochem; 2017 Dec; 118(12):4210-4215. PubMed ID: 28401598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entorhinal Principal Neurons Mediate Brain-stimulation Treatments for Epilepsy.
    Xu Z; Wang Y; Chen B; Xu C; Wu X; Wang Y; Zhang S; Hu W; Wang S; Guo Y; Zhang X; Luo J; Duan S; Chen Z
    EBioMedicine; 2016 Dec; 14():148-160. PubMed ID: 27908611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
    Nack M; Radu I; Gossing M; Bamann C; Bamberg E; von Mollard GF; Heberle J
    Photochem Photobiol Sci; 2010 Feb; 9(2):194-8. PubMed ID: 20126794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin.
    Li X; Gutierrez DV; Hanson MG; Han J; Mark MD; Chiel H; Hegemann P; Landmesser LT; Herlitze S
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17816-21. PubMed ID: 16306259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optogenetic therapy for retinitis pigmentosa.
    Busskamp V; Picaud S; Sahel JA; Roska B
    Gene Ther; 2012 Feb; 19(2):169-75. PubMed ID: 21993174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2.
    Ruffert K; Himmel B; Lall D; Bamann C; Bamberg E; Betz H; Eulenburg V
    Biochem Biophys Res Commun; 2011 Jul; 410(4):737-43. PubMed ID: 21683688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.