BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27905023)

  • 1. Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon.
    Alzu'bi A; Lindsay S; Kerwin J; Looi SJ; Khalil F; Clowry GJ
    Brain Struct Funct; 2017 Jul; 222(5):2309-2328. PubMed ID: 27905023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Transcription Factors COUP-TFI and COUP-TFII have Distinct Roles in Arealisation and GABAergic Interneuron Specification in the Early Human Fetal Telencephalon.
    Alzu'bi A; Lindsay SJ; Harkin LF; McIntyre J; Lisgo SN; Clowry GJ
    Cereb Cortex; 2017 Oct; 27(10):4971-4987. PubMed ID: 28922831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of ventral telencephalon transcription factors ASCL1 and DLX2 in the early fetal human cerebral cortex.
    Alzu'bi A; Clowry GJ
    J Anat; 2019 Sep; 235(3):555-568. PubMed ID: 30861584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons.
    Cai Y; Zhang Q; Wang C; Zhang Y; Ma T; Zhou X; Tian M; Rubenstein JL; Yang Z
    J Comp Neurol; 2013 Feb; 521(2):479-97. PubMed ID: 22791192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COUP-TFII expressing interneurons in human fetal forebrain.
    Reinchisi G; Ijichi K; Glidden N; Jakovcevski I; Zecevic N
    Cereb Cortex; 2012 Dec; 22(12):2820-30. PubMed ID: 22178710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COUP-TFII controls amygdala patterning by regulating neuropilin expression.
    Tang K; Rubenstein JL; Tsai SY; Tsai MJ
    Development; 2012 May; 139(9):1630-9. PubMed ID: 22492355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream.
    Kanatani S; Yozu M; Tabata H; Nakajima K
    J Neurosci; 2008 Dec; 28(50):13582-91. PubMed ID: 19074032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus.
    Fuentealba P; Klausberger T; Karayannis T; Suen WY; Huck J; Tomioka R; Rockland K; Capogna M; Studer M; Morales M; Somogyi P
    J Neurosci; 2010 Feb; 30(5):1595-609. PubMed ID: 20130170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
    Touzot A; Ruiz-Reig N; Vitalis T; Studer M
    Development; 2016 May; 143(10):1753-65. PubMed ID: 27034423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental characterization of Zswim5 expression in the progenitor domains and tangential migration pathways of cortical interneurons in the mouse forebrain.
    Chang CC; Kuo HY; Chen SY; Lin WT; Lu KM; Saito T; Liu FC
    J Comp Neurol; 2020 Oct; 528(14):2404-2419. PubMed ID: 32144752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain.
    Tripodi M; Filosa A; Armentano M; Studer M
    Development; 2004 Dec; 131(24):6119-29. PubMed ID: 15548577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy.
    Lodato S; Tomassy GS; De Leonibus E; Uzcategui YG; Andolfi G; Armentano M; Touzot A; Gaztelu JM; Arlotta P; Menendez de la Prida L; Studer M
    J Neurosci; 2011 Mar; 31(12):4650-62. PubMed ID: 21430164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factors COUP-TFI and COUP-TFII are required for the production of granule cells in the mouse olfactory bulb.
    Zhou X; Liu F; Tian M; Xu Z; Liang Q; Wang C; Li J; Liu Z; Tang K; He M; Yang Z
    Development; 2015 May; 142(9):1593-605. PubMed ID: 25922524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations.
    Nery S; Fishell G; Corbin JG
    Nat Neurosci; 2002 Dec; 5(12):1279-87. PubMed ID: 12411960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and molecular specification of striatal interneurons.
    Marin O; Anderson SA; Rubenstein JL
    J Neurosci; 2000 Aug; 20(16):6063-76. PubMed ID: 10934256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of cortical interneuron subtypes.
    Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA
    J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.
    Rubin AN; Alfonsi F; Humphreys MP; Choi CK; Rocha SF; Kessaris N
    J Neurosci; 2010 Sep; 30(36):12050-62. PubMed ID: 20826668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The early fetal development of human neocortical GABAergic interneurons.
    Al-Jaberi N; Lindsay S; Sarma S; Bayatti N; Clowry GJ
    Cereb Cortex; 2015 Mar; 25(3):631-45. PubMed ID: 24047602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct cortical migrations from the medial and lateral ganglionic eminences.
    Anderson SA; MarĂ­n O; Horn C; Jennings K; Rubenstein JL
    Development; 2001 Feb; 128(3):353-63. PubMed ID: 11152634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates.
    Xu Q; Guo L; Moore H; Waclaw RR; Campbell K; Anderson SA
    Neuron; 2010 Feb; 65(3):328-40. PubMed ID: 20159447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.