These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 27905494)
1. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Hajjarian Z; Nia HT; Ahn S; Grodzinsky AJ; Jain RK; Nadkarni SK Sci Rep; 2016 Dec; 6():37949. PubMed ID: 27905494 [TBL] [Abstract][Full Text] [Related]
2. Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids. Hajjarian Z; Nadkarni SK PLoS One; 2013; 8(5):e65014. PubMed ID: 23705028 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the viscoelastic properties of tissue from laser speckle fluctuations. Hajjarian Z; Nadkarni SK Sci Rep; 2012; 2():316. PubMed ID: 22428085 [TBL] [Abstract][Full Text] [Related]
4. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy. Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502 [TBL] [Abstract][Full Text] [Related]
5. Estimation of particle size variations for laser speckle rheology of materials. Hajjarian Z; Nadkarni SK Opt Lett; 2015 Mar; 40(5):764-7. PubMed ID: 25723427 [TBL] [Abstract][Full Text] [Related]
6. Measurement of bulk mechanical properties of tissue using laser speckle rheology. Hajjarian Z; Nadkarni SK Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5746-8. PubMed ID: 22255645 [TBL] [Abstract][Full Text] [Related]
7. Local rheology of human neutrophils investigated using atomic force microscopy. Lee YJ; Patel D; Park S Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920 [TBL] [Abstract][Full Text] [Related]
8. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments. Brückner BR; Nöding H; Janshoff A Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232 [TBL] [Abstract][Full Text] [Related]
9. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation. Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455 [TBL] [Abstract][Full Text] [Related]
10. Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements. Hajjarian Z; Nadkarni SK Opt Express; 2014 Mar; 22(6):6349-61. PubMed ID: 24663983 [TBL] [Abstract][Full Text] [Related]
11. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Kocen R; Gasik M; Gantar A; Novak S Biomed Mater; 2017 Mar; 12(2):025004. PubMed ID: 28106535 [TBL] [Abstract][Full Text] [Related]
16. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Ziemann F; Rädler J; Sackmann E Biophys J; 1994 Jun; 66(6):2210-6. PubMed ID: 8075354 [TBL] [Abstract][Full Text] [Related]
18. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding. Blum MM; Ovaert TC J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923 [TBL] [Abstract][Full Text] [Related]
19. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy. Chim YH; Mason LM; Rath N; Olson MF; Tassieri M; Yin H Sci Rep; 2018 Sep; 8(1):14462. PubMed ID: 30262873 [TBL] [Abstract][Full Text] [Related]
20. Tutorial on laser speckle rheology: technology, applications, and opportunities. Hajjarian Z; Nadkarni SK J Biomed Opt; 2020 May; 25(5):1-19. PubMed ID: 32358928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]