These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 27905527)

  • 1. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies.
    Du L; Tang D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):691-5. PubMed ID: 24695129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles.
    Yang H; Mei Z; Li Z; Liu H; Deng H; Xiao G; Li J; Luo Y; Yuan L
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie.
    Colapietro P; Brunetti G; di Toma A; Ferrara F; Chiriacò MS; Ciminelli C
    Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.
    Barik A; Zhang Y; Grassi R; Nadappuram BP; Edel JB; Low T; Koester SJ; Oh SH
    Nat Commun; 2017 Nov; 8(1):1867. PubMed ID: 29192277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher order microfibre modes for dielectric particle trapping and propulsion.
    Maimaiti A; Truong VG; Sergides M; Gusachenko I; Nic Chormaic S
    Sci Rep; 2015 Mar; 5():9077. PubMed ID: 25766925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable resonant graphene plasmons for mid-infrared biosensing.
    Wu T; Wei L
    Opt Express; 2016 Nov; 24(23):26241-26248. PubMed ID: 27857360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna.
    Hameed N; Nouho Ali A; Baida FI
    Sci Rep; 2017 Oct; 7(1):12806. PubMed ID: 28993675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.