BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 27905527)

  • 1. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies.
    Du L; Tang D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):691-5. PubMed ID: 24695129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles.
    Yang H; Mei Z; Li Z; Liu H; Deng H; Xiao G; Li J; Luo Y; Yuan L
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.
    Barik A; Zhang Y; Grassi R; Nadappuram BP; Edel JB; Low T; Koester SJ; Oh SH
    Nat Commun; 2017 Nov; 8(1):1867. PubMed ID: 29192277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher order microfibre modes for dielectric particle trapping and propulsion.
    Maimaiti A; Truong VG; Sergides M; Gusachenko I; Nic Chormaic S
    Sci Rep; 2015 Mar; 5():9077. PubMed ID: 25766925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable resonant graphene plasmons for mid-infrared biosensing.
    Wu T; Wei L
    Opt Express; 2016 Nov; 24(23):26241-26248. PubMed ID: 27857360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna.
    Hameed N; Nouho Ali A; Baida FI
    Sci Rep; 2017 Oct; 7(1):12806. PubMed ID: 28993675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.