BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27905882)

  • 21. Piscine orthoreovirus sequences in escaped farmed Atlantic salmon in Washington and British Columbia.
    Kibenge MJT; Wang Y; Gayeski N; Morton A; Beardslee K; McMillan B; Kibenge FSB
    Virol J; 2019 Apr; 16(1):41. PubMed ID: 30940162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of feed quality and quantity on growth, early maturation and smolt development in hatchery-reared landlocked Atlantic salmon Salmo salar.
    Norrgård JR; Bergman E; Greenberg LA; Schmitz M
    J Fish Biol; 2014 Oct; 85(4):1192-210. PubMed ID: 25263188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome.
    Roberge C; Normandeau E; Einum S; Guderley H; Bernatchez L
    Mol Ecol; 2008 Jan; 17(1):314-24. PubMed ID: 18173503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain.
    Sissener NH
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip.
    Karlsson S; Moen T; Lien S; Glover KA; Hindar K
    Mol Ecol Resour; 2011 Mar; 11 Suppl 1():247-53. PubMed ID: 21429178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural and anthropogenic radionuclides in Norwegian farmed Atlantic salmon (Salmo salar).
    Heldal HE; Volynkin A; Komperød M; Hannisdal R; Skjerdal H; Rudjord AL
    J Environ Radioact; 2019 Sep; 205-206():42-47. PubMed ID: 31100497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of fishmeal inclusion and prebiotic supplementation on the hindgut faecal microbiota of farmed Tasmanian Atlantic salmon (Salmo salar L.).
    Neuman C; Hatje E; Smullen R; Bowman JP; Katouli M
    J Appl Microbiol; 2018 Oct; 125(4):952-963. PubMed ID: 29799652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interpopulation Variation in the Atlantic Salmon Microbiome Reflects Environmental and Genetic Diversity.
    Uren Webster TM; Consuegra S; Hitchings M; Garcia de Leaniz C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs.
    Glover KA; Pertoldi C; Besnier F; Wennevik V; Kent M; Skaala Ø
    BMC Genet; 2013 Aug; 14():74. PubMed ID: 23968202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A common garden design reveals population-specific variability in potential impacts of hybridization between populations of farmed and wild Atlantic salmon, Salmo salar L.
    Harvey AC; Glover KA; Taylor MI; Creer S; Carvalho GR
    Evol Appl; 2016 Mar; 9(3):435-49. PubMed ID: 26989435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.).
    Clarkson M; Migaud H; Metochis C; Vera LM; Leeming D; Tocher DR; Taylor JF
    Br J Nutr; 2017 Jul; 118(1):17-29. PubMed ID: 28735572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar).
    Lundebye AK; Lock EJ; Rasinger JD; Nøstbakken OJ; Hannisdal R; Karlsbakk E; Wennevik V; Madhun AS; Madsen L; Graff IE; Ørnsrud R
    Environ Res; 2017 May; 155():49-59. PubMed ID: 28189073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon.
    Roberge C; Einum S; Guderley H; Bernatchez L
    Mol Ecol; 2006 Jan; 15(1):9-20. PubMed ID: 16367826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iodine Content of Wild and Farmed Seafood and Its Estimated Contribution to UK Dietary Iodine Intake.
    Sprague M; Chau TC; Givens DI
    Nutrients; 2021 Dec; 14(1):. PubMed ID: 35011067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild.
    Besnier F; Glover KA; Lien S; Kent M; Hansen MM; Shen X; Skaala Ø
    Heredity (Edinb); 2015 Jul; 115(1):47-55. PubMed ID: 26059968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybridization effects on phenotypic plasticity: experimental compensatory growth in farmed-wild Atlantic salmon.
    Morris MR; Fraser DJ; Eddington J; Hutchings JA
    Evol Appl; 2011 May; 4(3):444-58. PubMed ID: 25567994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of terrestrial based lipids in aquaculture feeds and the effects on flesh organohalogen and fatty acid concentrations in farmed Atlantic salmon.
    Friesen EN; Ikonomou MG; Higgs DA; Ang KP; Dubetz C
    Environ Sci Technol; 2008 May; 42(10):3519-23. PubMed ID: 18546683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of feed ration size on somatic and muscle growth in landlocked dwarf and farmed Atlantic salmon Salmo salar.
    Andersen Ø; Vieira V; Dessen JE; Johnston IA
    J Fish Biol; 2019 Apr; 94(4):614-620. PubMed ID: 30810225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed.
    Easton MD; Luszniak D; Von der GE
    Chemosphere; 2002 Feb; 46(7):1053-74. PubMed ID: 11999769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic evidence of long distance dispersal and transmission of piscine reovirus (PRV) between farmed and wild Atlantic salmon.
    Garseth ÅH; Ekrem T; Biering E
    PLoS One; 2013; 8(12):e82202. PubMed ID: 24349221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.