These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27906317)

  • 1. Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser.
    Yablon J; Zhou Z; Zhou M; Wang Y; Tseng S; Shahriar MS
    Opt Express; 2016 Nov; 24(24):27444-27456. PubMed ID: 27906317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a superluminal laser using electromagnetically induced transparency in Raman gain.
    Zhou Z; Zhu R; Sternfeld Y; Scheuer J; Bonacum J; Shahriar SM
    Opt Express; 2023 Apr; 31(9):14377-14388. PubMed ID: 37157303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetically induced transparency in Raman gain for realizing a superluminal ring laser.
    Sternfeld Y; Zhou Z; Scheuer J; Shahriar SM
    Opt Express; 2021 Jan; 29(2):1125-1139. PubMed ID: 33726334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of a highly superluminal laser employing optically pumped Raman gain and depletion.
    Zhou Z; Condon N; Hileman D; Shahriar MS
    Opt Express; 2022 Feb; 30(5):6746-6754. PubMed ID: 35299453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superluminal Raman laser with enhanced cavity length sensitivity.
    Zhou Z; Zhou M; Shahriar SM
    Opt Express; 2019 Oct; 27(21):29738-29745. PubMed ID: 31684231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superluminal ring laser for hypersensitive sensing.
    Yum HN; Salit M; Yablon J; Salit K; Wang Y; Shahriar MS
    Opt Express; 2010 Aug; 18(17):17658-65. PubMed ID: 20721152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ non-perturbative temperature measurement in a Cs alkali laser.
    Shaffer MK; Lilly TC; Zhdanov BV; Knize RJ
    Opt Lett; 2015 Jan; 40(1):119-22. PubMed ID: 25531624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase correlation during two-photon resonance process in an active cavity.
    Zhou Z; Condon NJ; Hileman DJ; Tseng SC; Shahriar SM
    Appl Opt; 2020 Jan; 59(3):866-872. PubMed ID: 32225219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White light cavity formation and superluminal lasing near exceptional points.
    Scheuer J
    Opt Express; 2018 Nov; 26(24):32091-32102. PubMed ID: 30650675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser.
    Wang R; Yang Z; Wang H; Xu X
    Opt Lett; 2017 Feb; 42(4):667-670. PubMed ID: 28198835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I.
    Han J; Wang Y; Cai H; Zhang W; Xue L; Wang H
    Opt Express; 2014 Jun; 22(11):13988-4003. PubMed ID: 24921590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of multiwavelength L-band Brillouin-Raman fiber laser under forward and backward pumped environment.
    Abass AK; Al-Mansoori MH; Jamaludin MZ; Abdullah F; Al-Mashhadani TF
    Appl Opt; 2013 Jun; 52(16):3764-9. PubMed ID: 23736332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II).
    Han J; Wang Y; Cai H; An G; Zhang W; Xue L; Wang H; Zhou J; Jiang Z; Gao M
    Opt Express; 2015 Apr; 23(7):9508-15. PubMed ID: 25968778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotope dependence of gas laser intensity profiles.
    Royce GA; Sargent Iii M
    Appl Opt; 1970 Nov; 9(11):2428-34. PubMed ID: 20094283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-wave Raman laser pumped within a semiconductor disk laser cavity.
    Parrotta DC; Lubeigt W; Kemp AJ; Burns D; Dawson MD; Hastie JE
    Opt Lett; 2011 Apr; 36(7):1083-5. PubMed ID: 21478990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lasing dynamics of super and sub luminal lasers.
    Scheuer J; Shahriar SM
    Opt Express; 2015 Dec; 23(25):32350-66. PubMed ID: 26699025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of energy pooling and ionization on physical features of a diode-pumped alkali laser.
    An G; Wang Y; Han J; Cai H; Zhou J; Zhang W; Xue L; Wang H; Gao M; Jiang Z
    Opt Express; 2015 Oct; 23(20):26414-25. PubMed ID: 26480154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of a highly subluminal laser with suppression of cavity length sensitivity by nearly three orders of magnitude.
    Yablon J; Zhou Z; Condon N; Hileman D; Tseng S; Shahriar S
    Opt Express; 2017 Nov; 25(24):30327-30335. PubMed ID: 29221062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-loop superluminal passive cavity.
    Smith DD; Chang H; Bertone PF; Myneni K; Smith LM; Grantham BE
    Opt Express; 2018 Jun; 26(12):14905-14914. PubMed ID: 30114795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.