These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27906383)

  • 61. Toward a better description of the nucleation rate of crystals and crystalline monolayers.
    Kashchiev D
    J Chem Phys; 2008 Oct; 129(16):164701. PubMed ID: 19045292
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular dynamics simulation of nucleation in the binary mixture n-nonane/methane.
    Braun S; Kalikmanov V; Kraska T
    J Chem Phys; 2014 Mar; 140(12):124305. PubMed ID: 24697439
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A unifying model for adsorption and nucleation of vapors on solid surfaces.
    Laaksonen A
    J Phys Chem A; 2015 Apr; 119(16):3736-45. PubMed ID: 25831213
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Scaled vapor-to-liquid nucleation in a Lennard-Jones system.
    Hale BN; Thomason M
    Phys Rev Lett; 2010 Jul; 105(4):046101. PubMed ID: 20867865
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Homogeneous nucleation rate measurements in supersaturated water vapor.
    Brus D; Zdímal V; Smolík J
    J Chem Phys; 2008 Nov; 129(17):174501. PubMed ID: 19045352
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A thermodynamically consistent kinetic framework for binary nucleation.
    Flagan RC
    J Chem Phys; 2007 Dec; 127(21):214503. PubMed ID: 18067360
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison between solutions of the general dynamic equation and the kinetic equation for nucleation and droplet growth.
    Holten V; van Dongen ME
    J Chem Phys; 2009 Jan; 130(1):014102. PubMed ID: 19140607
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Secondary Nucleation by Interparticle Energies. II. Kinetics.
    Ahn B; Bosetti L; Mazzotti M
    Cryst Growth Des; 2022 Jan; 22(1):74-86. PubMed ID: 35024002
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems.
    Goh L; Chen K; Bhamidi V; He G; Kee NC; Kenis PJ; Zukoski CF; Braatz RD
    Cryst Growth Des; 2010 May; 10(6):2515-2521. PubMed ID: 20953348
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nucleation and growth of droplets at a liquid-gas interface.
    Nepomnyashchy AA; Golovin AA; Tikhomirova AE; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021605. PubMed ID: 17025444
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regularities of non-stationary diffusion growth of overcritical gas bubbles and kinetics of bubble distribution in presence of capillary and viscous forces.
    Kuchma AE; Shchekin AK
    J Chem Phys; 2021 Apr; 154(14):144101. PubMed ID: 33858160
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth.
    Kim BJ; Tersoff J; Kodambaka S; Reuter MC; Stach EA; Ross FM
    Science; 2008 Nov; 322(5904):1070-3. PubMed ID: 19008438
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Origin of the failure of classical nucleation theory: incorrect description of the smallest clusters.
    Merikanto J; Zapadinsky E; Lauri A; Vehkamäki H
    Phys Rev Lett; 2007 Apr; 98(14):145702. PubMed ID: 17501289
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of experimental data for the nucleation rate of water droplets.
    Kashchiev D
    J Chem Phys; 2006 Jul; 125(4):44505. PubMed ID: 16942154
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Breakdown of nucleation theory for crystals with strongly anisotropic interactions between molecules.
    Cabriolu R; Kashchiev D; Auer S
    J Chem Phys; 2012 Nov; 137(20):204903. PubMed ID: 23206027
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Helmholtz free energy of a phase containing a sparse ensemble of heterophase clusters with application to nucleation theory.
    Tschudi HR
    J Phys Chem B; 2010 Mar; 114(9):3219-35. PubMed ID: 20148535
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.
    Brus D; Zdímal V; Stratmann F
    J Chem Phys; 2006 Apr; 124(16):164306. PubMed ID: 16674134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.