These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27906450)

  • 1. LOVTRAP: A Versatile Method to Control Protein Function with Light.
    Wang H; Hahn KM
    Curr Protoc Cell Biol; 2016 Dec; 73():21.10.1-21.10.14. PubMed ID: 27906450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization.
    Hammer JA; Ruta A; West JL
    Ann Biomed Eng; 2020 Jul; 48(7):1885-1894. PubMed ID: 31720906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LOVTRAP: an optogenetic system for photoinduced protein dissociation.
    Wang H; Vilela M; Winkler A; Tarnawski M; Schlichting I; Yumerefendi H; Kuhlman B; Liu R; Danuser G; Hahn KM
    Nat Methods; 2016 Sep; 13(9):755-8. PubMed ID: 27427858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Responsive Dynamic Protein Hydrogels Based on LOVTRAP.
    Duan T; Bian Q; Li H
    Langmuir; 2021 Aug; 37(33):10214-10222. PubMed ID: 34396769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open-Closed Structure of Light-Responsive Protein LOV2 Regulates Its Molecular Interaction with a Binding Partner.
    Younas T; Vidallon MLP; Tabor RF; He L
    J Phys Chem Lett; 2020 Oct; 11(20):8647-8653. PubMed ID: 32945680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic control of cofilin and αTAT in living cells using Z-lock.
    Stone OJ; Pankow N; Liu B; Sharma VP; Eddy RJ; Wang H; Putz AT; Teets FD; Kuhlman B; Condeelis JS; Hahn KM
    Nat Chem Biol; 2019 Dec; 15(12):1183-1190. PubMed ID: 31740825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii.
    Kasahara M; Swartz TE; Olney MA; Onodera A; Mochizuki N; Fukuzawa H; Asamizu E; Tabata S; Kanegae H; Takano M; Christie JM; Nagatani A; Briggs WR
    Plant Physiol; 2002 Jun; 129(2):762-73. PubMed ID: 12068117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different role of the Jalpha helix in the light-induced activation of the LOV2 domains in various phototropins.
    Koyama T; Iwata T; Yamamoto A; Sato Y; Matsuoka D; Tokutomi S; Kandori H
    Biochemistry; 2009 Aug; 48(32):7621-8. PubMed ID: 19601589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.
    Heintz U; Schlichting I
    Elife; 2016 Jan; 5():e11860. PubMed ID: 26754770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy.
    Tengholm A; Teruel MN; Meyer T
    Sci STKE; 2003 Feb; 2003(169):PL4. PubMed ID: 12582202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced structural changes of LOV domain-containing polypeptides from Arabidopsis phototropin 1 and 2 studied by small-angle X-ray scattering.
    Nakasako M; Iwata T; Matsuoka D; Tokutomi S
    Biochemistry; 2004 Nov; 43(47):14881-90. PubMed ID: 15554695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the DNA cleavage activity of light-inducible chimeric endonucleases by bidirectional photoactivation.
    Schierling B; Pingoud A
    Bioconjug Chem; 2012 Jun; 23(6):1105-9. PubMed ID: 22559722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Tuning of Protein-protein Binding in Bilayers Using LOVTRAP.
    Tischer D; Weiner OD
    Bio Protoc; 2020 Sep; 10(17):e3745. PubMed ID: 33659405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum.
    Herman E; Sachse M; Kroth PG; Kottke T
    Biochemistry; 2013 May; 52(18):3094-101. PubMed ID: 23621750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
    Phair RD; Gorski SA; Misteli T
    Methods Enzymol; 2004; 375():393-414. PubMed ID: 14870680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).
    Wehler P; Niopek D; Eils R; Di Ventura B
    Curr Protoc Chem Biol; 2016 Jun; 8(2):131-145. PubMed ID: 27258691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.
    Lele TP; Pendse J; Kumar S; Salanga M; Karavitis J; Ingber DE
    J Cell Physiol; 2006 Apr; 207(1):187-94. PubMed ID: 16288479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Protein Activity and Degradation Using Blue Light.
    Lutz AP; Renicke C; Taxis C
    Methods Mol Biol; 2016; 1408():67-78. PubMed ID: 26965116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Phe1010 in light-induced structural changes of the neo1-LOV2 domain of Adiantum.
    Yamamoto A; Iwata T; Tokutomi S; Kandori H
    Biochemistry; 2008 Jan; 47(3):922-8. PubMed ID: 18163650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.