BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27906638)

  • 1. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family.
    Mutahir Z; Christiansen LS; Clausen AR; Berchtold MW; Gojkovic Z; Munch-Petersen B; Knecht W; Piškur J
    Nucleosides Nucleotides Nucleic Acids; 2016 Dec; 35(10-12):677-690. PubMed ID: 27906638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa.
    Konrad A; Lai J; Mutahir Z; Piškur J; Liberles DA
    J Mol Evol; 2014 Apr; 78(3-4):202-16. PubMed ID: 24500774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation.
    Knecht W; Petersen GE; Munch-Petersen B; Piskur J
    J Mol Biol; 2002 Jan; 315(4):529-40. PubMed ID: 11812127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoisomeric selectivity of human deoxyribonucleoside kinases.
    Wang J; Choudhury D; Chattopadhyaya J; Eriksson S
    Biochemistry; 1999 Dec; 38(51):16993-9. PubMed ID: 10606535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function.
    Garcia-España A; Chung PJ; Zhao X; Lee A; Pellicer A; Yu J; Sun TT; Desalle R
    Mol Phylogenet Evol; 2006 Nov; 41(2):355-67. PubMed ID: 16814572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine.
    Tinta T; Christiansen LS; Konrad A; Liberles DA; Turk V; Munch-Petersen B; Piškur J; Clausen AR
    FEMS Microbiol Lett; 2012 Jun; 331(2):120-7. PubMed ID: 22462611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana.
    Clausen AR; Girandon L; Ali A; Knecht W; Rozpedowska E; Sandrini MP; Andreasson E; Munch-Petersen B; Piškur J
    FEBS J; 2012 Oct; 279(20):3889-97. PubMed ID: 22897443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life on the salvage path: the deoxynucleoside kinase of Lactobacillus acidophilus R-26.
    Ives DH; Ikeda S
    Prog Nucleic Acid Res Mol Biol; 1998; 59():205-55. PubMed ID: 9427844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression of human deoxyguanosine kinase cDNA.
    Johansson M; Karlsson A
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7258-62. PubMed ID: 8692979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabinosylguanine is phosphorylated by both cytoplasmic deoxycytidine kinase and mitochondrial deoxyguanosine kinase.
    Rodriguez CO; Mitchell BS; Ayres M; Eriksson S; Gandhi V
    Cancer Res; 2002 Jun; 62(11):3100-5. PubMed ID: 12036920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy.
    Eriksson S; Arnér E; Spasokoukotskaja T; Wang L; Karlsson A; Brosjö O; Gunvén P; Julusson G; Liliemark J
    Adv Enzyme Regul; 1994; 34():13-25. PubMed ID: 7942271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deoxynucleoside phosphorylating enzymes in monkey and human tissues show great similarities, while mouse deoxycytidine kinase has a different substrate specificity.
    Habteyesus A; Nordenskjöld A; Bohman C; Eriksson S
    Biochem Pharmacol; 1991 Oct; 42(9):1829-36. PubMed ID: 1657002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striking ability of adenosine-2'(3')-deoxy-3'(2')-triphosphates and related analogues to replace ATP as phosphate donor for all four human, and the Drosophila melanogaster, deoxyribonucleoside kinases.
    Krawiec K; Kierdaszuk B; Kalinichenko EN; Rubinova EB; Mikhailopulo IA; Eriksson S; Munch-Petersen B; Shugar D
    Nucleosides Nucleotides Nucleic Acids; 2003 Feb; 22(2):153-73. PubMed ID: 12744603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction.
    Sandrini MP; Piskur J
    Trends Biochem Sci; 2005 May; 30(5):225-8. PubMed ID: 15896737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxycytidine kinase and deoxyguanosine kinase of Lactobacillus acidophilus R-26 are colinear products of a single gene.
    Ma N; Ikeda S; Guo S; Fieno A; Park I; Grimme S; Ikeda T; Ives DH
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14385-90. PubMed ID: 8962060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal deoxyribonucleoside kinases: 'forward' and 'retrograde' evolution of their substrate specificity.
    Piskur J; Sandrini MP; Knecht W; Munch-Petersen B
    FEBS Lett; 2004 Feb; 560(1-3):3-6. PubMed ID: 14987989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of dopamine receptor genes of the D1 class in vertebrates.
    Yamamoto K; Mirabeau O; Bureau C; Blin M; Michon-Coudouel S; Demarque M; Vernier P
    Mol Biol Evol; 2013 Apr; 30(4):833-43. PubMed ID: 23197594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of a bacterial deoxyadenosine kinase reveals the basis for substrate specificity.
    Welin M; Wang L; Eriksson S; Eklund H
    J Mol Biol; 2007 Mar; 366(5):1615-23. PubMed ID: 17229440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Two CART Genes (CART1 and CART2) in Chickens (Gallus gallus).
    Cai G; Mo C; Huang L; Li J; Wang Y
    PLoS One; 2015; 10(5):e0127107. PubMed ID: 25992897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deoxyribonucleoside kinases in mitochondrial DNA depletion.
    Saada-Reisch A
    Nucleosides Nucleotides Nucleic Acids; 2004 Oct; 23(8-9):1205-15. PubMed ID: 15571232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.