These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27907104)

  • 41. Phenotypic characterization of the Xenorhabdus bacterial symbiont of a Texas strain of the entomopathogenic nematode Steinernema riobrave, and characterization of the Xenorhabdus bovienii bacterial symbiont of a Newfoundland strain of Steinernema feltiae.
    He H; Gordon R; Gow JA
    Can J Microbiol; 2000 Jul; 46(7):618-22. PubMed ID: 10932355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the pixB gene in Xenorhabdus nematophila and discovery of a new gene family.
    Lucas J; Goetsch M; Fischer M; Forst S
    Microbiology (Reading); 2018 Apr; 164(4):495-508. PubMed ID: 29498622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species.
    Emelianoff V; Sicard M; Le Brun N; Moulia C; Ferdy JB
    Parasitol Res; 2007 Feb; 100(3):657-9. PubMed ID: 16944202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with Disulfide-Dependent Structural Features.
    Bartelli NL; Sun S; Gucinski GC; Zhou H; Song K; Hayes CS; Dahlquist FW
    J Mol Biol; 2019 Aug; 431(17):3203-3216. PubMed ID: 31181288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus).
    Sicard M; Hinsinger J; Le Brun N; Pages S; Boemare N; Moulia C
    BMC Evol Biol; 2006 Sep; 6():68. PubMed ID: 16953880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli.
    Aoki SK; Webb JS; Braaten BA; Low DA
    J Bacteriol; 2009 Mar; 191(6):1777-86. PubMed ID: 19124575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains.
    Kochanowsky RM; Bradshaw C; Forlastro I; Stock SP
    FEMS Microbiol Ecol; 2020 Aug; 96(8):. PubMed ID: 32558899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination.
    Goodrich-Blair H; Clarke DJ
    Mol Microbiol; 2007 Apr; 64(2):260-8. PubMed ID: 17493120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria).
    Sicard M; Ferdy JB; Pagès S; Le Brun N; Godelle B; Boemare N; Moulia C
    J Evol Biol; 2004 Sep; 17(5):985-93. PubMed ID: 15312071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae.
    Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C
    Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum.
    Park Y; Kang S; Sadekuzzaman M; Kim H; Jung JK; Kim Y
    J Invertebr Pathol; 2017 Mar; 144():74-87. PubMed ID: 28193447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The first report of Xenorhabdus indica from Steinernema pakistanense: co-phylogenetic study suggests co-speciation between X. indica and its steinernematid nematodes.
    Bhat AH; Chaubey AK; Půža V
    J Helminthol; 2019 Jan; 93(1):81-90. PubMed ID: 29338795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression.
    Kim Y; Ji D; Cho S; Park Y
    J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes.
    Bonifassi E; Fischer-Le Saux M; Boemare N; Lanois A; Laumond C; Smart G
    J Invertebr Pathol; 1999 Sep; 74(2):164-72. PubMed ID: 10486229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems.
    Mercy C; Ize B; Salcedo SP; de Bentzmann S; Bigot S
    PLoS One; 2016; 11(1):e0147435. PubMed ID: 26808644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contact-Dependent Growth Inhibition Proteins in Acinetobacter baylyi ADP1.
    De Gregorio E; Esposito EP; Zarrilli R; Di Nocera PP
    Curr Microbiol; 2018 Nov; 75(11):1434-1440. PubMed ID: 30019131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000.
    Somvanshi VS; Lang E; Ganguly S; Swiderski J; Saxena AK; Stackebrandt E
    Syst Appl Microbiol; 2006 Nov; 29(7):519-25. PubMed ID: 16459045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria.
    Beck CM; Morse RP; Cunningham DA; Iniguez A; Low DA; Goulding CW; Hayes CS
    Structure; 2014 May; 22(5):707-18. PubMed ID: 24657090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The proton-motive force is required for translocation of CDI toxins across the inner membrane of target bacteria.
    Ruhe ZC; Nguyen JY; Beck CM; Low DA; Hayes CS
    Mol Microbiol; 2014 Oct; 94(2):466-81. PubMed ID: 25174572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence.
    Liu J; Berry RE; Blouin MS
    J Invertebr Pathol; 2001 Feb; 77(2):87-91. PubMed ID: 11273687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.