These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27908030)

  • 41. Effects of contextual cues on speech recognition in simulated electric-acoustic stimulation.
    Kong YY; Donaldson G; Somarowthu A
    J Acoust Soc Am; 2015 May; 137(5):2846-57. PubMed ID: 25994712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Release from informational masking in a monaural competing-speech task with vocoded copies of the maskers presented contralaterally.
    Bernstein JG; Iyer N; Brungart DS
    J Acoust Soc Am; 2015 Feb; 137(2):702-13. PubMed ID: 25698005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pre- and Postoperative Binaural Unmasking for Bimodal Cochlear Implant Listeners.
    Sheffield BM; Schuchman G; Bernstein JGW
    Ear Hear; 2017; 38(5):554-567. PubMed ID: 28301390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does acoustic fundamental frequency information enhance cochlear implant performance?
    Mulhern L; Cullington H
    Cochlear Implants Int; 2014 Mar; 15(2):101-8. PubMed ID: 24597637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speech perception in individuals with auditory neuropathy.
    Zeng FG; Liu S
    J Speech Lang Hear Res; 2006 Apr; 49(2):367-80. PubMed ID: 16671850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B; Francart T
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.
    Hu Y
    J Acoust Soc Am; 2010 May; 127(5):3145-53. PubMed ID: 21117763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vocoder simulations of highly focused cochlear stimulation with limited dynamic range and discriminable steps.
    Stafford RC; Stafford JW; Wells JD; Loizou PC; Keller MD
    Ear Hear; 2014; 35(2):262-70. PubMed ID: 24322978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners.
    Koning R; Madhu N; Wouters J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):331-41. PubMed ID: 25167542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binaural interference with simulated electric acoustic stimulation.
    van Ginkel C; Gifford RH; Stecker GC
    J Acoust Soc Am; 2019 Apr; 145(4):2445. PubMed ID: 31046315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multimodal and Spectral Degradation Effects on Speech and Emotion Recognition in Adult Listeners.
    Ritter C; Vongpaisal T
    Trends Hear; 2018; 22():2331216518804966. PubMed ID: 30378469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.
    Vaerenberg B; Péan V; Lesbros G; De Ceulaer G; Schauwers K; Daemers K; Gnansia D; Govaerts PJ
    Cochlear Implants Int; 2013 Jun; 14(3):150-7. PubMed ID: 23321588
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language.
    Chen F; Zheng D; Tsao Y
    J Acoust Soc Am; 2017 Sep; 142(3):1157. PubMed ID: 28964090
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimizing maps for electric acoustic stimulation users.
    Yoon YS; Shin YR; Kim JM; Coltisor A; Chun YM
    Cochlear Implants Int; 2019 May; 20(3):106-115. PubMed ID: 30694120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electro-Tactile Stimulation Enhances Cochlear Implant Speech Recognition in Noise.
    Huang J; Sheffield B; Lin P; Zeng FG
    Sci Rep; 2017 May; 7(1):2196. PubMed ID: 28526871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Frontotemporal activation differs between perception of simulated cochlear implant speech and speech in background noise: An image-based fNIRS study.
    Defenderfer J; Forbes S; Wijeakumar S; Hedrick M; Plyler P; Buss AT
    Neuroimage; 2021 Oct; 240():118385. PubMed ID: 34256138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discriminability and Perceptual Saliency of Temporal and Spectral Cues for Final Fricative Consonant Voicing in Simulated Cochlear-Implant and Bimodal Hearing.
    Kong YY; Winn MB; Poellmann K; Donaldson GS
    Trends Hear; 2016 Jun; 20():. PubMed ID: 27317666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Factors affecting masking release in cochlear-implant vocoded speech.
    Li N; Loizou PC
    J Acoust Soc Am; 2009 Jul; 126(1):338-46. PubMed ID: 19603890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effectiveness of Place-based Mapping in Electric-Acoustic Stimulation Devices.
    Dillon MT; Canfarotta MW; Buss E; Hopfinger J; O'Connell BP
    Otol Neurotol; 2021 Jan; 42(1):197-202. PubMed ID: 33885267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.