These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2050 related articles for article (PubMed ID: 27908154)
1. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network. Fan M; Li Y; Zheng S; Peng W; Tang W; Li L Methods; 2019 Aug; 166():103-111. PubMed ID: 30771490 [TBL] [Abstract][Full Text] [Related]
3. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121 [TBL] [Abstract][Full Text] [Related]
4. Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices. Chan HP; Wu YT; Sahiner B; Wei J; Helvie MA; Zhang Y; Moore RH; Kopans DB; Hadjiiski L; Way T Med Phys; 2010 Jul; 37(7):3576-86. PubMed ID: 20831065 [TBL] [Abstract][Full Text] [Related]
5. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. Chan HP; Wei J; Zhang Y; Helvie MA; Moore RH; Sahiner B; Hadjiiski L; Kopans DB Med Phys; 2008 Sep; 35(9):4087-95. PubMed ID: 18841861 [TBL] [Abstract][Full Text] [Related]
7. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning. Yousefi M; Krzyżak A; Suen CY Comput Biol Med; 2018 May; 96():283-293. PubMed ID: 29665537 [TBL] [Abstract][Full Text] [Related]
8. A deep learning classifier for digital breast tomosynthesis. Ricciardi R; Mettivier G; Staffa M; Sarno A; Acampora G; Minelli S; Santoro A; Antignani E; Orientale A; Pilotti IAM; Santangelo V; D'Andria P; Russo P Phys Med; 2021 Mar; 83():184-193. PubMed ID: 33798904 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Samala RK; Chan HP; Hadjiiski LM; Helvie MA; Richter C; Cha K Phys Med Biol; 2018 May; 63(9):095005. PubMed ID: 29616660 [TBL] [Abstract][Full Text] [Related]
10. Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms. van Schie G; Wallis MG; Leifland K; Danielsson M; Karssemeijer N Med Phys; 2013 Apr; 40(4):041902. PubMed ID: 23556896 [TBL] [Abstract][Full Text] [Related]
11. Computer-aided detection of breast masses on full field digital mammograms. Wei J; Sahiner B; Hadjiiski LM; Chan HP; Petrick N; Helvie MA; Roubidoux MA; Ge J; Zhou C Med Phys; 2005 Sep; 32(9):2827-38. PubMed ID: 16266097 [TBL] [Abstract][Full Text] [Related]
12. A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology. Qiu Y; Yan S; Gundreddy RR; Wang Y; Cheng S; Liu H; Zheng B J Xray Sci Technol; 2017; 25(5):751-763. PubMed ID: 28436410 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437 [TBL] [Abstract][Full Text] [Related]
14. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography. Mendel K; Li H; Sheth D; Giger M Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083 [TBL] [Abstract][Full Text] [Related]
15. Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis. Samala RK; Chan HP; Hadjiiski LM; Helvie MA Phys Med Biol; 2016 Oct; 61(19):7092-7112. PubMed ID: 27648708 [TBL] [Abstract][Full Text] [Related]
16. Developing breast lesion detection algorithms for digital breast tomosynthesis: Leveraging false positive findings. Hossain MB; Nishikawa RM; Lee J Med Phys; 2022 Dec; 49(12):7596-7608. PubMed ID: 35916103 [TBL] [Abstract][Full Text] [Related]
17. Dual system approach to computer-aided detection of breast masses on mammograms. Wei J; Chan HP; Sahiner B; Hadjiiski LM; Helvie MA; Roubidoux MA; Zhou C; Ge J Med Phys; 2006 Nov; 33(11):4157-68. PubMed ID: 17153394 [TBL] [Abstract][Full Text] [Related]
18. Breast Cancer Diagnosis in Digital Breast Tomosynthesis: Effects of Training Sample Size on Multi-Stage Transfer Learning Using Deep Neural Nets. Samala RK; Heang-Ping Chan ; Hadjiiski L; Helvie MA; Richter CD; Cha KH IEEE Trans Med Imaging; 2019 Mar; 38(3):686-696. PubMed ID: 31622238 [TBL] [Abstract][Full Text] [Related]
19. Deep Convolutional Neural Networks for breast cancer screening. Chougrad H; Zouaki H; Alheyane O Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427 [TBL] [Abstract][Full Text] [Related]
20. Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis. Mazurowski MA; Lo JY; Harrawood BP; Tourassi GD J Biomed Inform; 2011 Oct; 44(5):815-23. PubMed ID: 21554985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]