These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 27908171)
1. Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease. Ghafoorian M; Karssemeijer N; van Uden IW; de Leeuw FE; Heskes T; Marchiori E; Platel B Med Phys; 2016 Dec; 43(12):6246. PubMed ID: 27908171 [TBL] [Abstract][Full Text] [Related]
2. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging. Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL; Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597 [TBL] [Abstract][Full Text] [Related]
3. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs. Park BY; Lee MJ; Lee SH; Cha J; Chung CS; Kim ST; Park H Neuroimage Clin; 2018; 18():638-647. PubMed ID: 29845012 [TBL] [Abstract][Full Text] [Related]
4. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features. Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263 [TBL] [Abstract][Full Text] [Related]
5. Two-step deep neural network for segmentation of deep white matter hyperintensities in migraineurs. Hong J; Park BY; Lee MJ; Chung CS; Cha J; Park H Comput Methods Programs Biomed; 2020 Jan; 183():105065. PubMed ID: 31522090 [TBL] [Abstract][Full Text] [Related]
6. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator. Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451 [TBL] [Abstract][Full Text] [Related]
7. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods. Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477 [TBL] [Abstract][Full Text] [Related]
8. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Guerrero R; Qin C; Oktay O; Bowles C; Chen L; Joules R; Wolz R; Valdés-Hernández MC; Dickie DA; Wardlaw J; Rueckert D Neuroimage Clin; 2018; 17():918-934. PubMed ID: 29527496 [TBL] [Abstract][Full Text] [Related]
9. Early detection of white matter hyperintensities using SHIVA-WMH detector. Tsuchida A; Boutinaud P; Verrecchia V; Tzourio C; Debette S; Joliot M Hum Brain Mapp; 2024 Jan; 45(1):e26548. PubMed ID: 38050769 [TBL] [Abstract][Full Text] [Related]
10. Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data. Mu S; Lu W; Yu G; Zheng L; Qiu J Comput Methods Programs Biomed; 2024 Jan; 243():107904. PubMed ID: 37924768 [TBL] [Abstract][Full Text] [Related]
11. Only White Matter Hyperintensities Predicts Post-Stroke Cognitive Performances Among Cerebral Small Vessel Disease Markers: Results from the TABASCO Study. Molad J; Kliper E; Korczyn AD; Ben Assayag E; Ben Bashat D; Shenhar-Tsarfaty S; Aizenstein O; Shopin L; Bornstein NM; Auriel E J Alzheimers Dis; 2017; 56(4):1293-1299. PubMed ID: 28157096 [TBL] [Abstract][Full Text] [Related]
12. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities. Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711 [TBL] [Abstract][Full Text] [Related]
13. Magnetic Resonance Imaging Tissue Signatures Associated With White Matter Changes Due to Sporadic Cerebral Small Vessel Disease Indicate That White Matter Hyperintensities Can Regress. Jochems ACC; Muñoz Maniega S; Clancy U; Arteaga C; Jaime Garcia D; Chappell FM; Hewins W; Locherty R; Backhouse EV; Barclay G; Jardine C; McIntyre D; Gerrish I; Kampaite A; Sakka E; Valdés Hernández M; Wiseman S; Bastin ME; Stringer MS; Thrippleton MJ; Doubal FN; Wardlaw JM J Am Heart Assoc; 2024 Feb; 13(3):e032259. PubMed ID: 38293936 [TBL] [Abstract][Full Text] [Related]
14. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study. Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450 [TBL] [Abstract][Full Text] [Related]
15. Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction. Tsai JZ; Peng SJ; Chen YW; Wang KW; Li CH; Wang JY; Chen CJ; Lin HJ; Smith EE; Wu HK; Sung SF; Yeh PS; Hsin YL PLoS One; 2014; 9(8):e104011. PubMed ID: 25127120 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study. van der Veen PH; Muller M; Vincken KL; Hendrikse J; Mali WP; van der Graaf Y; Geerlings MI; Stroke; 2015 May; 46(5):1233-8. PubMed ID: 25804924 [TBL] [Abstract][Full Text] [Related]
17. Quantitative and qualitative MRI evaluation of cerebral small vessel disease in an elderly population: a longitudinal study. Nylander R; Fahlström M; Rostrup E; Kullberg J; Damangir S; Ahlström H; Lind L; Larsson EM Acta Radiol; 2018 May; 59(5):612-618. PubMed ID: 28814098 [TBL] [Abstract][Full Text] [Related]
18. Novel Automated Method for the Detection of White Matter Hyperintensities in Brain Multispectral MR Images. Chen HM; Chen CC; Wang HC; Chang YC; Pan KJ; Chen WH; Chen HC; Wu YY; Chai JW; Ouyang YC; Lee SK Curr Med Imaging; 2020; 16(5):469-478. PubMed ID: 32484081 [TBL] [Abstract][Full Text] [Related]
19. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder. Atlason HE; Love A; Sigurdsson S; Gudnason V; Ellingsen LM Neuroimage Clin; 2019; 24():102085. PubMed ID: 31835288 [TBL] [Abstract][Full Text] [Related]
20. Three-tissue compositional analysis reveals in-vivo microstructural heterogeneity of white matter hyperintensities following stroke. Khan W; Egorova N; Khlif MS; Mito R; Dhollander T; Brodtmann A Neuroimage; 2020 Sep; 218():116869. PubMed ID: 32334092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]