BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 27908256)

  • 1. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms.
    Hoseinzadeh E; Makhdoumi P; Taha P; Hossini H; Stelling J; Kamal MA; Ashraf GM
    Curr Drug Metab; 2017; 18(2):120-128. PubMed ID: 27908256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Nanoparticles with Antimicrobial Property.
    Reshma VG; Syama S; Sruthi S; Reshma SC; Remya NS; Mohanan PV
    Curr Drug Metab; 2017; 18(11):1040-1054. PubMed ID: 28952436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloid particle formulations for antimicrobial applications.
    Halbus AF; Horozov TS; Paunov VN
    Adv Colloid Interface Sci; 2017 Nov; 249():134-148. PubMed ID: 28528626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses.
    Khezerlou A; Alizadeh-Sani M; Azizi-Lalabadi M; Ehsani A
    Microb Pathog; 2018 Oct; 123():505-526. PubMed ID: 30092260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites.
    Allahverdiyev AM; Abamor ES; Bagirova M; Rafailovich M
    Future Microbiol; 2011 Aug; 6(8):933-40. PubMed ID: 21861623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial activity of the metals and metal oxide nanoparticles.
    Dizaj SM; Lotfipour F; Barzegar-Jalali M; Zarrintan MH; Adibkia K
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():278-84. PubMed ID: 25280707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalization of Inorganic Nanoparticles to Augment Antimicrobial Efficiency: A Critical Analysis.
    Khan K; Javed S
    Curr Pharm Biotechnol; 2018; 19(7):523-536. PubMed ID: 30062962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.
    Król A; Pomastowski P; Rafińska K; Railean-Plugaru V; Buszewski B
    Adv Colloid Interface Sci; 2017 Nov; 249():37-52. PubMed ID: 28923702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imparting Pharmaceutical Applications to the Surface of Fabrics for Wound and Skin Care by Ultrasonic Waves.
    Gedanken A; Perkas N; Perelshtein I; Lipovsky A
    Curr Med Chem; 2018; 25(41):5739-5754. PubMed ID: 29284390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications.
    Younis AB; Haddad Y; Kosaristanova L; Smerkova K
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(3):e1860. PubMed ID: 36205103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.
    Raghunath A; Perumal E
    Int J Antimicrob Agents; 2017 Feb; 49(2):137-152. PubMed ID: 28089172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of some abundant nanoparticles, their antimicrobial and enzyme inhibition activity.
    Khan ST; Malik A; Wahab R; Abd-Elkader OH; Ahamed M; Ahmad J; Musarrat J; Siddiqui MA; Al-Khedhairy AA
    Acta Microbiol Immunol Hung; 2017 Jun; 64(2):203-216. PubMed ID: 28218004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties.
    Stankic S; Suman S; Haque F; Vidic J
    J Nanobiotechnology; 2016 Oct; 14(1):73. PubMed ID: 27776555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties.
    Chusuei CC; Wu CH; Mallavarapu S; Hou FY; Hsu CM; Winiarz JG; Aronstam RS; Huang YW
    Chem Biol Interact; 2013 Nov; 206(2):319-26. PubMed ID: 24120544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?
    Wang D; Lin Z; Wang T; Yao Z; Qin M; Zheng S; Lu W
    J Hazard Mater; 2016 May; 308():328-34. PubMed ID: 26852208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles and Zeolites: Antibacterial Effects and their Mechanism against Pathogens.
    Azizi-Lalabadi M; Alizadeh-Sani M; Khezerlou A; Mirzanajafi-Zanjani M; Zolfaghari H; Bagheri V; Divband B; Ehsani A
    Curr Pharm Biotechnol; 2019; 20(13):1074-1086. PubMed ID: 31309886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials for alternative antibacterial therapy.
    Hemeg HA
    Int J Nanomedicine; 2017; 12():8211-8225. PubMed ID: 29184409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity.
    El-Nahhal IM; Elmanama AA; El Ashgar NM; Amara N; Selmane M; Chehimi MM
    Ultrason Sonochem; 2017 Sep; 38():478-487. PubMed ID: 28633850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status.
    Khan ST; Musarrat J; Al-Khedhairy AA
    Colloids Surf B Biointerfaces; 2016 Oct; 146():70-83. PubMed ID: 27259161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.