BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27908581)

  • 1. Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal-antimicrobial peptide conjugate.
    Costley D; Nesbitt H; Ternan N; Dooley J; Huang YY; Hamblin MR; McHale AP; Callan JF
    Int J Antimicrob Agents; 2017 Jan; 49(1):31-36. PubMed ID: 27908581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonodynamic excitation of Rose Bengal for eradication of gram-positive and gram-negative bacteria.
    Nakonechny F; Nisnevitch M; Nitzan Y; Nisnevitch M
    Biomed Res Int; 2013; 2013():684930. PubMed ID: 23509759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in
    Wen X; Zhang X; Szewczyk G; El-Hussein A; Huang YY; Sarna T; Hamblin MR
    Antimicrob Agents Chemother; 2017 Jul; 61(7):. PubMed ID: 28438946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells.
    Lashua LP; Melvin JA; Deslouches B; Pilewski JM; Montelaro RC; Bomberger JM
    J Antimicrob Chemother; 2016 Aug; 71(8):2200-7. PubMed ID: 27231279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial effect of photodynamic therapy using high-power blue light-emitting diode and red-dye agent on Porphyromonas gingivalis.
    Chui C; Aoki A; Takeuchi Y; Sasaki Y; Hiratsuka K; Abiko Y; Izumi Y
    J Periodontal Res; 2013 Dec; 48(6):696-705. PubMed ID: 23441868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and In Vivo Studies.
    Wang Y; Wu X; Chen J; Amin R; Lu M; Bhayana B; Zhao J; Murray CK; Hamblin MR; Hooper DC; Dai T
    J Infect Dis; 2016 May; 213(9):1380-7. PubMed ID: 26908743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial efficacy and toxicity of novel CAMPs against P. aeruginosa infection in a murine skin wound infection model.
    Yang M; Zhang C; Hansen SA; Mitchell WJ; Zhang MZ; Zhang S
    BMC Microbiol; 2019 Dec; 19(1):293. PubMed ID: 31842727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds.
    Björn C; Noppa L; Näslund Salomonsson E; Johansson AL; Nilsson E; Mahlapuu M; Håkansson J
    Int J Antimicrob Agents; 2015 May; 45(5):519-24. PubMed ID: 25649371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial photodynamic inactivation and photodynamic therapy for infections.
    Huang L; Dai T; Hamblin MR
    Methods Mol Biol; 2010; 635():155-73. PubMed ID: 20552347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial peptide therapeutics for cystic fibrosis.
    Zhang L; Parente J; Harris SM; Woods DE; Hancock RE; Falla TJ
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2921-7. PubMed ID: 15980369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy.
    Xu F; Hu M; Liu C; Choi SK
    Biomater Sci; 2017 Mar; 5(4):678-685. PubMed ID: 28280817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
    Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC
    Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation.
    Serpe L; Giuntini F
    J Photochem Photobiol B; 2015 Sep; 150():44-9. PubMed ID: 26037696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial activity of topical dyes used in clinical veterinary ophthalmology.
    Ferreira TAC; Warth JFG; Dos Santos LL; Moore BA; Montiani-Ferreira F
    Vet Ophthalmol; 2020 May; 23(3):497-505. PubMed ID: 32026609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces.
    Alves D; Magalhães A; Grzywacz D; Neubauer D; Kamysz W; Pereira MO
    Acta Biomater; 2016 Oct; 44():313-22. PubMed ID: 27514277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of flow cytometry to compare the antimicrobial efficacy of silver-containing wound dressings against planktonic Staphylococcus aureus and Pseudomonas aeruginosa.
    Percival SL; Slone W; Linton S; Okel T; Corum L; Thomas JG
    Wound Repair Regen; 2011; 19(3):436-41. PubMed ID: 21518089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark Antibacterial Activity of Rose Bengal.
    Nakonechny F; Barel M; David A; Koretz S; Litvak B; Ragozin E; Etinger A; Livne O; Pinhasi Y; Gellerman G; Nisnevitch M
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short Synthetic β-Sheet Antimicrobial Peptides for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Burn Wound Infections.
    Zhong G; Cheng J; Liang ZC; Xu L; Lou W; Bao C; Ong ZY; Dong H; Yang YY; Fan W
    Adv Healthc Mater; 2017 Apr; 6(7):. PubMed ID: 28135045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the antimicrobial peptide melimine with bacterial membranes.
    Rasul R; Cole N; Balasubramanian D; Chen R; Kumar N; Willcox MD
    Int J Antimicrob Agents; 2010 Jun; 35(6):566-72. PubMed ID: 20227248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-kill Kinetics of a Novel Antimicrobial Silver Wound Gel Against Select Wound Pathogens.
    Lee Y; Atchley DH; Proctor CA; Smith FL; Yi S; Loftis CM; Yates KM
    Wounds; 2015 Dec; 27(12):336-46. PubMed ID: 27447106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.