BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27908626)

  • 1. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil.
    Wan X; Lei M; Chen T; Yang J
    Sci Total Environ; 2017 Feb; 579():1467-1475. PubMed ID: 27908626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba.
    Wan X; Lei M
    Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.
    Ma J; Lei E; Lei M; Liu Y; Chen T
    Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil.
    Yan Y; Yang J; Guo Y; Yang J; Wan X; Zhao C; Guo J; Chen T
    Int J Phytoremediation; 2022; 24(1):25-33. PubMed ID: 33998931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercropped Amygdalus persica and Pteris vittata applied with additives presents a safe utilization and remediation mode for arsenic-contaminated orchard soil.
    Li Y; Yang J; Guo J; Zheng G; Chen T; Meng X; He M; Ma C
    Sci Total Environ; 2023 Jun; 879():163034. PubMed ID: 36990239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping.
    Yan Y; Yang J; Wan X; Shi H; Yang J; Ma C; Lei M; Chen T
    Sci Total Environ; 2022 Mar; 812():152475. PubMed ID: 34952060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of diversity and arsenic-transforming functional genes of soil microorganisms to arsenic hyperaccumulator (Pteris vittata L.)/pomegranate (Punica granatum L.) intercropping.
    Zhang D; Lei M; Wan X; Guo G; Zhao X; Liu Y
    Sci Total Environ; 2022 Dec; 850():157767. PubMed ID: 35926620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production.
    Zeng W; Wan X; Lei M; Chen T
    Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations.
    Wang W; Yang X; Mo Q; Li Y; Meng D; Li H
    Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Pteris vittata-maize intercropping on plant agronomic parameters and soil arsenic remediation.
    Wan T; Dong X; Yu L; Li D; Han H; Tu S; Wan J
    Chemosphere; 2024 Jul; 359():142331. PubMed ID: 38740340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Intercropping
    Zeng P; Guo ZH; Xiao XY; Peng C; Huang B
    Huan Jing Ke Xue; 2018 Nov; 39(11):5207-5216. PubMed ID: 30628246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice.
    Huang SY; Zhuo C; Du XY; Li HS
    Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation.
    Zeng P; Guo Z; Xiao X; Peng C; Huang B; Feng W
    Ecotoxicol Environ Saf; 2019 Mar; 169():306-315. PubMed ID: 30458397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitation of Morus alba L. intercropped with Sedum alfredii H. and Arundo donax L. on soil contaminated with potentially toxic metals.
    Zeng P; Guo Z; Xiao X; Peng C; Liao B; Zhou H; Gu J
    Chemosphere; 2022 Mar; 290():133107. PubMed ID: 34848227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction.
    Lessl JT; Luo J; Ma LQ
    J Hazard Mater; 2014 Aug; 279():485-92. PubMed ID: 25108101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.
    Liu X; Fu JW; Tang N; da Silva EB; Cao Y; Turner BL; Chen Y; Ma LQ
    Environ Pollut; 2017 Jul; 226():212-218. PubMed ID: 28432964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.