These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 27908774)
1. Increased incorporation of gaseous CO Park S; Lee JU; Cho S; Kim H; Oh HB; Pack SP; Lee J J Biotechnol; 2017 Jan; 241():101-107. PubMed ID: 27908774 [TBL] [Abstract][Full Text] [Related]
2. Improving Succinate Productivity by Engineering a Cyanobacterial CO Xiao M; Zhu X; Bi C; Ma Y; Zhang X Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731528 [TBL] [Abstract][Full Text] [Related]
3. Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli. Zhu LW; Zhang L; Wei LN; Li HM; Yuan ZP; Chen T; Tang YL; Liang XH; Tang YJ Sci Rep; 2015 Dec; 5():17321. PubMed ID: 26626308 [TBL] [Abstract][Full Text] [Related]
4. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate. Del Prete S; De Luca V; Capasso C; Supuran CT; Carginale V Bioorg Med Chem; 2016 Jan; 24(2):220-5. PubMed ID: 26712095 [TBL] [Abstract][Full Text] [Related]
5. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli. Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774 [TBL] [Abstract][Full Text] [Related]
6. CO Park JY; Kim YH; Min J Enzyme Microb Technol; 2017 Jan; 96():103-110. PubMed ID: 27871369 [TBL] [Abstract][Full Text] [Related]
7. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Lin H; San KY; Bennett GN Appl Microbiol Biotechnol; 2005 Jun; 67(4):515-23. PubMed ID: 15565333 [TBL] [Abstract][Full Text] [Related]
8. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788 [TBL] [Abstract][Full Text] [Related]
9. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Tan Z; Zhu X; Chen J; Li Q; Zhang X Appl Environ Microbiol; 2013 Aug; 79(16):4838-44. PubMed ID: 23747698 [TBL] [Abstract][Full Text] [Related]
10. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Meza E; Becker J; Bolivar F; Gosset G; Wittmann C Microb Cell Fact; 2012 Sep; 11():127. PubMed ID: 22973998 [TBL] [Abstract][Full Text] [Related]
11. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
12. Improvement of the phosphoenolpyruvate carboxylase activity of Phaeodactylum tricornutum PEPCase 1 through protein engineering. Chang KS; Jeon H; Seo S; Lee Y; Jin E Enzyme Microb Technol; 2014 Jun; 60():64-71. PubMed ID: 24835101 [TBL] [Abstract][Full Text] [Related]
13. Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase. Chang KS; Jeon H; Gu MB; Pack SP; Jin E Bioprocess Biosyst Eng; 2013 Dec; 36(12):1923-8. PubMed ID: 23689757 [TBL] [Abstract][Full Text] [Related]
14. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Wang W; Li Z; Xie J; Ye Q Bioprocess Biosyst Eng; 2009 Oct; 32(6):737-45. PubMed ID: 19156443 [TBL] [Abstract][Full Text] [Related]
15. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. Lu S; Eiteman MA; Altman E J Biotechnol; 2009 Sep; 143(3):213-23. PubMed ID: 19631242 [TBL] [Abstract][Full Text] [Related]
16. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Kim P; Laivenieks M; Vieille C; Zeikus JG Appl Environ Microbiol; 2004 Feb; 70(2):1238-41. PubMed ID: 14766613 [TBL] [Abstract][Full Text] [Related]
17. High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli. Wang D; Li Q; Mao Y; Xing J; Su Z Appl Microbiol Biotechnol; 2010 Aug; 87(6):2025-35. PubMed ID: 20521041 [TBL] [Abstract][Full Text] [Related]
18. Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Lin H; Vadali RV; Bennett GN; San KY Biotechnol Prog; 2004; 20(5):1599-604. PubMed ID: 15458351 [TBL] [Abstract][Full Text] [Related]
19. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Sánchez AM; Bennett GN; San KY Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]