BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27909346)

  • 1. Copper(I)-Dioxygen Adducts and Copper Enzyme Mechanisms.
    Liu JJ; Diaz DE; Quist DA; Karlin KD
    Isr J Chem; 2016 Oct; 56():9-10. PubMed ID: 27909346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-Copper(I) Primary O
    Kim B; Karlin KD
    Acc Chem Res; 2023 Aug; 56(16):2197-2212. PubMed ID: 37527056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
    Rice DB; Massie AA; Jackson TA
    Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unprecedented direct cupric-superoxo conversion to a bis-
    Quist DA; Ehudin MA; Karlin KD
    Inorganica Chim Acta; 2019 Jan; 485():155-161. PubMed ID: 30988551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with O-H and C-H Substrates.
    Diaz DE; Quist DA; Herzog AE; Schaefer AW; Kipouros I; Bhadra M; Solomon EI; Karlin KD
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17572-17576. PubMed ID: 31469942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J; Garcia-Bosch I; Company A; Costas M
    Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity.
    Bhadra M; Transue WJ; Lim H; Cowley RE; Lee JYC; Siegler MA; Josephs P; Henkel G; Lerch M; Schindler S; Neuba A; Hodgson KO; Hedman B; Solomon EI; Karlin KD
    J Am Chem Soc; 2021 Mar; 143(10):3707-3713. PubMed ID: 33684290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature syntheses and reactivity of Cu2O2 active-site models.
    Citek C; Herres-Pawlis S; Stack TD
    Acc Chem Res; 2015 Aug; 48(8):2424-33. PubMed ID: 26230113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes.
    Bhadra M; Lee JYC; Cowley RE; Kim S; Siegler MA; Solomon EI; Karlin KD
    J Am Chem Soc; 2018 Jul; 140(29):9042-9045. PubMed ID: 29957998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis?
    Gagnon N; Tolman WB
    Acc Chem Res; 2015 Jul; 48(7):2126-31. PubMed ID: 26075312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleophilic reactivity of a copper(II)-superoxide complex.
    Pirovano P; Magherusan AM; McGlynn C; Ure A; Lynes A; McDonald AR
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5946-50. PubMed ID: 24753290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation.
    Lee JY; Karlin KD
    Curr Opin Chem Biol; 2015 Apr; 25():184-93. PubMed ID: 25756327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the Cu(n)-O2 structure and subsequent reactivity.
    Hatcher LQ; Karlin KD
    J Biol Inorg Chem; 2004 Sep; 9(6):669-83. PubMed ID: 15311336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.