BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27909410)

  • 1. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion.
    Rindom E; Vissing K
    Front Physiol; 2016; 7():547. PubMed ID: 27909410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TSC2/Rheb signaling mediates ERK-dependent regulation of mTORC1 activity in C2C12 myoblasts.
    Miyazaki M; Takemasa T
    FEBS Open Bio; 2017 Mar; 7(3):424-433. PubMed ID: 28286738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle.
    MacLea KS; Abuhagr AM; Pitts NL; Covi JA; Bader BD; Chang ES; Mykles DL
    J Exp Biol; 2012 Feb; 215(Pt 4):590-604. PubMed ID: 22279066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis for load-induced skeletal muscle hypertrophy.
    Marcotte GR; West DW; Baar K
    Calcif Tissue Int; 2015 Mar; 96(3):196-210. PubMed ID: 25359125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function.
    Groennebaek T; Vissing K
    Front Physiol; 2017; 8():713. PubMed ID: 28966596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanotransduction pathways in skeletal muscle hypertrophy.
    Yamada AK; Verlengia R; Bueno Junior CR
    J Recept Signal Transduct Res; 2012 Feb; 32(1):42-4. PubMed ID: 22171534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise.
    Wackerhage H; Schoenfeld BJ; Hamilton DL; Lehti M; Hulmi JJ
    J Appl Physiol (1985); 2019 Jan; 126(1):30-43. PubMed ID: 30335577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal Muscle Mitochondrial Protein Synthesis and Respiration Increase With Low-Load Blood Flow Restricted as Well as High-Load Resistance Training.
    Groennebaek T; Jespersen NR; Jakobsgaard JE; Sieljacks P; Wang J; Rindom E; Musci RV; Bøtker HE; Hamilton KL; Miller BF; de Paoli FV; Vissing K
    Front Physiol; 2018; 9():1796. PubMed ID: 30618808
    [No Abstract]   [Full Text] [Related]  

  • 9. Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p.
    Russell AP; Wallace MA; Kalanon M; Zacharewicz E; Della Gatta PA; Garnham A; Lamon S
    Acta Physiol (Oxf); 2017 Jun; 220(2):263-274. PubMed ID: 27739650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity.
    Finlay GA; Malhowski AJ; Liu Y; Fanburg BL; Kwiatkowski DJ; Toksoz D
    Cancer Res; 2007 Oct; 67(20):9878-86. PubMed ID: 17942919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary Aronia melanocarpa extract enhances mTORC1 signaling, but has no effect on protein synthesis and protein breakdown-related signaling, in response to resistance exercise in rat skeletal muscle.
    Makanae Y; Ato S; Kido K; Fujita S
    J Int Soc Sports Nutr; 2019 Dec; 16(1):60. PubMed ID: 31829236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle.
    Shad BJ; Smeuninx B; Atherton PJ; Breen L
    Appl Physiol Nutr Metab; 2015 Dec; 40(12):1233-41. PubMed ID: 26566242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Panaxatriol derived from ginseng augments resistance exercised-induced protein synthesis via mTORC1 signaling in rat skeletal muscle.
    Takamura Y; Makanae Y; Ato S; Yoshii N; Kido K; Nomura M; Uchiyama A; Shiozawa N; Fujita S
    Nutr Res; 2016 Nov; 36(11):1193-1201. PubMed ID: 27865617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men.
    Agergaard J; Bülow J; Jensen JK; Reitelseder S; Drummond MJ; Schjerling P; Scheike T; Serena A; Holm L
    Am J Physiol Endocrinol Metab; 2017 Apr; 312(4):E326-E338. PubMed ID: 27780819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle.
    West DW; Baehr LM; Marcotte GR; Chason CM; Tolento L; Gomes AV; Bodine SC; Baar K
    J Physiol; 2016 Jan; 594(2):453-68. PubMed ID: 26548696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of Smad1 transcriptional activity by Ras-extracellular signal-regulated kinase pathway: a possible mechanism for collagen-dependent osteoblastic differentiation.
    Suzawa M; Tamura Y; Fukumoto S; Miyazono K; Fujita T; Kato S; Takeuchi Y
    J Bone Miner Res; 2002 Feb; 17(2):240-8. PubMed ID: 11811554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.
    Hornberger TA; Chu WK; Mak YW; Hsiung JW; Huang SA; Chien S
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4741-6. PubMed ID: 16537399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans.
    Jackman SR; Witard OC; Philp A; Wallis GA; Baar K; Tipton KD
    Front Physiol; 2017; 8():390. PubMed ID: 28638350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Stretch Induces mTOR Recruitment and Activation at the Phosphatidic Acid-Enriched Macropinosome in Muscle Cell.
    Lin SS; Liu YW
    Front Cell Dev Biol; 2019; 7():78. PubMed ID: 31139627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.