BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27909706)

  • 1. Out-of-plane integration of a multimode optical fiber for single particle/cell detection at multiple points on a microfluidic device with applications to particle/cell counting, velocimetry, size discrimination and the analysis of single cell lysate injections.
    Sadeghi J; Patabadige DE; Culbertson AH; Latifi H; Culbertson CT
    Lab Chip; 2016 Dec; 17(1):145-155. PubMed ID: 27909706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Optical Fiber Bridges in Microfluidic Devices to Create Multiple Excitation/Detection Points for Single Cell Analysis.
    Patabadige DE; Sadeghi J; Kalubowilage M; Bossmann SH; Culbertson AH; Latifi H; Culbertson CT
    Anal Chem; 2016 Oct; 88(20):9920-9925. PubMed ID: 27626461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for the high-throughput chemical analysis of cells.
    McClain MA; Culbertson CT; Jacobson SC; Allbritton NL; Sims CE; Ramsey JM
    Anal Chem; 2003 Nov; 75(21):5646-55. PubMed ID: 14588001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber probe based microfluidic raman spectroscopy.
    Ashok PC; Singh GP; Tan KM; Dholakia K
    Opt Express; 2010 Apr; 18(8):7642-9. PubMed ID: 20588604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of colloidal filtration of polystyrene micro-particles on glass substrate using a microfluidic device.
    Sun J; Tandogan N; Gu AZ; Müftü S; Goluch ED; Wan KT
    Colloids Surf B Biointerfaces; 2018 May; 165():381-387. PubMed ID: 29529580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed-field separation of particles in a microfluidic device.
    Regtmeier J; Eichhorn R; Duong TT; Reimann P; Anselmetti D; Ros A
    Eur Phys J E Soft Matter; 2007 Apr; 22(4):335-40. PubMed ID: 17492395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels.
    Xuan X; Li D
    Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis.
    Choi G; Murphy E; Guan W
    ACS Sens; 2019 Jul; 4(7):1957-1963. PubMed ID: 31264411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry.
    de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides.
    Choi K; Mudrik JM; Wheeler AR
    Anal Bioanal Chem; 2015 Sep; 407(24):7467-75. PubMed ID: 26232932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cells flows in rectilinear microfluidic chip.
    Anandan P; Ortiz D; Intaglietta M; Cabrales PJ; Bucolo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3225-8. PubMed ID: 26736979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay.
    Pamme N; Koyama R; Manz A
    Lab Chip; 2003 Aug; 3(3):187-92. PubMed ID: 15100772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Sampling of Aerosolized Particles Using Stratified Two-Phase Microfluidics.
    Ahasan K; Schnoebelen NJ; Shrotriya P; Kingston TA
    ACS Sens; 2024 Jun; 9(6):2915-2924. PubMed ID: 38848499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.